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We present a novel Monte Carlo algorithm for N diffusing finite particles that react on collisions. Using
the theory of first-passage processes and time dependent Green’s functions, we break the difficult N-body
problem into independent single- and two-body propagations circumventing numerous diffusion hops
used in standard Monte Carlo simulations. The new algorithm is exact, extremely efficient, and applicable
to many important physical situations in arbitrary integer dimensions.
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A kinetic Monte Carlo (KMC) method is often applied
to model systems that evolve through collisions among
multiple random walkers. The range of applications is
exceptionally wide, including diffusion-controlled chemi-
cal and biochemical reactions, recombination of carriers in
semiconductors, surface growth, diffusion-limited aggre-
gation, Ostwald ripening, and diverse studies like epidemi-
ology and population dynamics. Its transparency, direct
connection to the underlying physical mechanisms, and
simplicity of implementation, have made KMC calcula-
tions a method of choice in computational science and its
appeal has increased steadily over time [1]. Regrettably,
the method’s practical applicability is severely limited
when the density of particles, or walkers, is so low that it
takes many diffusion hops for any two walkers to find each
other. In such important situations, much work is wasted
while walkers explore space whereas the interesting events
occur very infrequently. Several methods have been pro-
posed to propagate particles more effectively using the
exactly known statistics of collisions between two diffus-
ing particles [2–5]. Unfortunately, the existing methods
rely on approximations whose accuracy needs to be care-
fully assessed.

We present a new general KMC method for diffusion
simulations that is both computationally efficient and ap-
proximation free. The method relies on time dependent
Green’s functions to propagate the walkers over long dis-
tances in a single KMC step. The need for approximations
is removed by partitioning the space into nonoverlapping
‘‘protective domains’’ (PDs), each containing one walker,
and then using appropriate first-passage Green’s functions
[6] to propagate walkers to the boundaries of their respec-
tive PDs, one walker at a time. Thus, numerous diffusive
hops are replaced by large ‘‘superhops’’ guaranteeing that
the statistics of random walks remains unaltered. This new
method carries an additional computational overhead that
is more than offset by a dramatic increase in propagation
efficiency. The new method extends the applicability of
KMC simulations well beyond their perceived computa-
tional limits, while maintaining exact statistical equiva-
lence to existing methods.

The theory of first-passage processes treats diffusive
propagation of particles to a boundary [6]. In a
continuum-space continuum-time random walk starting
at time t � 0 from position r0 � 0 inside a simply con-
nected spatial domain � with boundary @�, the probabil-
ity that the walker has not reached @� by time t is

 P�t� �
Z

�
c�r; t�dr;

where c�r; t� is the solution (Green’s function) of the
diffusion equation in �, @tc � D�c with the initial con-
dition c�r; 0� � ��r� r0� and the absorbing boundary
condition c�@�; t� � 0. The latter condition means that,
when the walker arrives at @�, it disappears from �. The
conditional probability density of finding the walker at
point r at time t provided it is still inside � is simply
c�r;t�
P�t� , while the probability that when the walker arrives to
boundary @� at time � it will exit � at point r� is

 ��r�; �� �
rc�r�; �� � nR

@�rc�r; �� � ndS
; r� 2 @�;

where the numerator is the density of probability current in
the direction of the outward normal n to the boundary
surface @�, and the denominator is the total (integrated)
outward probability current at time �.

For domains � of simple geometries, e.g., spheres or
cubes, simple solutions for the first-passage statistics are
available to propagate walkers through space efficiently.
The famous walk-on-spheres algorithm for simulations of
diffusion-limited aggregation (DLA) is an example [7]. So
far, the use of first-passage theory in Monte Carlo simula-
tions has been limited to single walker propagation viewed
as a time independent process [8,9]. The only exceptions
known to us are the use of time dependent Green’s func-
tions for Monte Carlo calculations of the ground state of
bosons [10,11]. In their algorithm [10], Kalos, Levesque,
and Verlet (KLV) ‘‘protected’’ each hard-sphere walker by
a larger sphere concentric with the walker position and
then, for each walker independently, sampled the time of
first arrival to the surfaces of their protective spheres from
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appropriate distributions. Given that the protective spheres
were constructed to be nonoverlapping, the statistics of
each walker was guaranteed to be independent of any other
walker during the time it takes for the first walker to reach
its protective boundary (see Fig. 1). Thus, the KLV algo-
rithm entails: (1) drawing nonoverlapping protective
spheres, (2) sampling times of first arrival for each walker
�1; �2; . . . ; �N , (3) finding the shortest time of first arrival
�min, (4) moving the respective walker to a randomly
selected point on its protective sphere, (5) advancing the
clock by �min, and (6) updating positions of all other N � 1
walkers by sampling from the conditional probability dis-
tribution c� �r; t�=P�t�. Then, the cycle continues from step
(1) to step (6). In KLV, first-passage solutions are used in
steps (2) and (6).

Here we propose a seemingly minor but crucial modifi-
cation of the KLValgorithm. First, not just the shortest time
of first arrival �min is selected, but a specially ordered list
(heap) of all N first arrival times is maintained. As in KLV,
on every cycle we sample a move associated with the PD
having the shortest arrival time, but do not update positions
of the remaining N � 1 walkers. We redraw only the
protective sphere for the walker just propagated so as not
to overlap with any other of N � 1 spheres, randomly
sample a new first arrival time for this walker, and insert
it into the existing list. The statistics of N random walkers
remain independent of each other. By reducing the com-
putational complexity from O�N� in steps (1), (2), and (6)
of the KLV algorithm to O�1�, this modification makes a
dramatic difference in the complexity required to advance
the clock. The new algorithm treats only one walker on
each step rather than all N. This results in a spectacular
speedup of KMC simulations while retaining the exact
statistics.

Figure 2 demonstrates that the method is indeed accurate
and efficient. This is a simulation of the diffusion-
controlled reaction of irreversible coalescence A� A)
A on a discrete 1d lattice. On every MC step every particle

hops to the right or to the left with equal probabilities and
whenever two particles are found to occupy the same
lattice site one of them is eliminated. We performed this
simulation in two different ways: first using the standard
KMC procedure [1] and then using the new algorithm in
which on every MC step only one particle is advanced to
the boundary of its PD (a segment in 1d). Figure 2(a) shows
the kinetics of this reaction averaged over 70 independent
realizations. The two kinetics coincide within (small) sta-
tistical uncertainties. At the same time, it takes on average
5� 109 particle hops to reach the end of this reaction using
the standard KMC algorithm whereas the new algorithm
accomplishes the same in just 4� 104 steps. Similarly
impressive agreement and speedup is achieved in simula-
tions of a similar annihilation reaction A� A) 0, but this
time performed in continuous space and continuous time in
three dimensions [Fig. 2(b)].

Several additional issues had to be addressed to make
the new algorithm practically efficient. One potentially
troublesome situation arises when one of the walkers prop-
agates itself into a small region of space ‘‘squeezed’’
between other PDs. In such cases, the size of the new PD
that can be drawn around the walker after its propagation
can be very small, limited by the surrounding PDs. The
new first arrival time for the squeezed walker is then likely
to be the shortest so that the same walker will be selected
again and again for propagation. To improve efficiency,
when such a situation is detected, the algorithm updates
positions of one or several neighboring walkers whose PDs
bound the squeezed walker, as in step 6 in the KLV
algorithm described earlier: in the statistical distribution
used for such an update, time is counted from the instant
when the walker selected for an update was last propagated
or updated. Such a partial repartitioning typically frees up
more space for the squeezed walker. On the other hand,
when two walkers are detected to be considerably closer to
each other than to any other walker, it is advantageous to
protect the two close walkers as a pair and to use an
appropriate Green’s function to propagate such a pair
either to collision or to separation. A more detailed de-
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FIG. 1. Diffusing particles (small closed circles) numbered 1
to 7 are protected by nonoverlapping PDs (larger open circles).
Particle 7 is propagated to the surface of its PD because its
arrival time (�7) is shortest among all particles. It is moved to a
random position on its protective circle, a new nonoverlapping
protective circle is drawn around its new position and the time is
advanced to �7.
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FIG. 2. Comparison between the standard KMC calculations
(crosses) and the first-passage KMC (circles) results.
(a) Discrete-time discrete-space simulations of A� A) A co-
alescence reaction in 1D. (b) Continuous-time continuum-space
simulations of A� A) 0 annihilation reaction in 3D. Note that
each circle is filled with a cross, indicating agreement.
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scription of collision handling and other algorithmic ele-
ments will be presented in a future publication.

We have thus far discussed our new algorithm when
spherical walkers are protected by concentric spheres.
However, the choice for the PDs shape is arbitrary. A
particularly simple implementation arises when cubical
walkers are protected by cubical domains. Then the evo-
lution of a system with N walkers in d dimensions is
equivalent, in most aspects of algorithmic implementation,
to a simpler problem of Nd walkers in 1D. In particular,
products of simple one-dimensional Green’s functions can
be used for propagation of the walker pairs to collisions.
Green’s functions for sampling binary collisions between
spherical walkers are somewhat more complicated. It is
possible to use combinations of PDs of different shapes.
More generally, it is possible to exercise the freedom to
partition the available space so as to optimize the overall
performance of the algorithm by balancing the expense of
making the random propagation steps and that of redraw-
ing the PDs.

The efficiency of the new algorithm allows very large
and very long KMC simulations for many diffusion-limited
processes. A typical time to complete a simulation of A�
A) 0 reactions among 108 particles in 1D is a few hours
on a single CPU workstation. The previous largest simu-
lation of the same reaction involved 16� 106 particles,
entailed considerably larger computational effort and used
an approximate method [5,12]. In our simulations, the
computational efficiency remains very high, taking on
average 10.4 propagations between collision events. In
1D, the simulation efficiency is independent of the particle
density but in higher dimensions the efficiency decreases
slightly with decreasing density. A simulation of the same
reaction with 125� 106 particles in 3D took 36 hours on a
single CPU workstation. Here the average number of
single-particle propagations between subsequent collisions
was 33.6. As shown in Fig. 3(a), the running average of this
number increases inversely proportional to the cube root of
the density of remaining particles. This is compensated, in
the late stages of reaction, by the reduced calculations
when the number of particles becomes small. Con-
sequently, the overall efficiency remains high in 2D, 3D,
and higher dimensions. It would have taken tens of years to
complete the same 125� 106 particle simulation in 3D
using standard KMC calculations. [Figure 3(a) compares
the computational efficiency of the new method and stan-
dard KMC calculations].

To further enhance the efficiency of our new algorithm
in simulations of annihilation, coalescence, and similar
reactions, we combine it with volume replication [13]. In
a 1D simulation, as soon as the number of particles in the
periodic simulation volume (line segment in 1D) decreases
by a factor of 2, we double the volume by adding to the
surviving particles their images in a neighboring periodic
replica of the previous volume. Thus, the number of par-
ticles returns to its initial value after the replication. In
dimension d, the same recipe requires waiting until the

number of particles decreases by a factor 2d. The new
replicated particles are treated as independent walkers after
the replication. For such replications to preserve correct
statistics, one must note that the correlation length in the
system may grow with time and that the size of the simu-
lation volume must remain larger than the correlation
length. Given that correlations propagate by diffusion, an
upper bound on the rate of growth of the correlation length
is 	

������
Dt
p

where D is the diffusion coefficient. Conser-
vatively, the volume should be replicated whenever

������
Dt
p

grows to become an appreciable fraction of the linear box
size L. Hence, the physical time t elapsed between repli-
cations should at least quadruple with each replication. In a
particular case of A� A) 0 (or A� A) A) reaction in
1D, the asymptotic kinetics for particle concentration is
c�t� 	 t�1=2. The number of particles can be allowed to
decrease by half between subsequent replications and does
not have to grow at all in order to avoid propagation of
correlations through the expanding volume. Remarkably,
such a simulation can be continued over an arbitrary long
physical time [see Fig. 3(b)].

In higher dimensions and for different reactions, the
situation may be less favorable. In dimension d, assuming
that the asymptotic kinetics is t��, the number of particles
will have to increase with each replication by a factor
2d�2� unless, for some reason, the correlation length grows
slower than

������
Dt
p

. Thus, in higher dimensions and/or for
smaller decay exponent �, the number of particles should
grow over continued replications. In such cases, it may be
better to start from a small number of particles and let the
system grow by replications to a maximum size afforded
by the computer memory. This opposes the common prac-
tice to start from a maximum size that fits into memory and
then simulate the reaction to the end. As has been noted
before [12], in their late stages such simulations do not
reproduce the kinetics of interest due to the propagation of
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FIG. 3. (a) Computational performance as a function of parti-
cle density measured in six independent realizations of A� A)
0 annihilation reaction in 3D performed on a single CPU work-
station using the standard KMC calculations with a finite hop
distance (upper symbols) and the new algorithm (lower sym-
bols). The dashed and dotted lines are theoretical estimates with
slopes of 1 for the standard KMC calculations and 1=3 for the
new algorithm. (b) Kinetics of A� A) 0 annihilation reaction
in 1D, using replication. The inset is the logarithmic derivative of
the kinetic curve taken over the same time interval reproducing
the theoretical exponent � � 0:5 for this reaction.
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the correlation length through the (fixed) simulation vol-
ume. The useful time horizon of even the largest simula-
tions performed has heretofore been limited to 8–
10 time decades. The replication trick makes it possible
to significantly extend the time horizon of such simulations
(in some cases to infinite time) at no additional cost.

The new method is quite general and trivially extendable
to diffusion-limited processes in any number of dimen-
sions, in complex confined geometries with absorbing or
reflecting boundaries, anisotropic diffusion, simultaneous
diffusion of slow and fast and/or large and small particles,
diffusion with a constant bias, and various other exten-
sions. As an example, consider the diffusion-limited
two-species annihilation reaction A� B) 0 in 3D. As
was noted in [14], the annihilation results in a gradual
emergence of alternating A-rich and B-rich domains.
Remarkably, unlike most other diffusion-limited processes
in 3D, this reaction does not obey the mean-field kinetics
when the number of A and B species is close to the
stoichiometry: asymptotically, the concentration of species
decays as	t�3=4. One of important physical realizations of
this reaction is the recombination of vacancies and inter-
stitial defects produced in crystals by ion or electron
irradiation [3]. It has not been possible to investigate in
detail the long-term kinetics and geometry of domains
emerging in reactions of this kind, precisely because the
standard KMC calculations slow down dramatically when
the density of remaining particles becomes low [14]. By
contrast, the new algorithm presented here handles the
same difficult cases with ease and in any number of di-

mensions. One such simulation of two-species annihilation
reactions in 3D is shown in Fig. 4.

In summary, we present an extension of the diffusion
Monte Carlo approach that overcomes severe computa-
tional limitations of standard KMC calculations when the
density of diffusing particles is low. The new method is
based on exact solutions for first-passage processes and, as
a result, is exactly statistically equivalent to and, simulta-
neously, dramatically more efficient than the standard
KMC calculations allowing for simulations of very large
systems evolving over very long elapsed physical times on
modest computers. The efficiency and accuracy of the new
method is demonstrated here by simulations of well-
studied diffusion-controlled reactions in a number of spa-
tial dimensions. At the same time, the range of potential
applications of the new first-passage algorithm is excep-
tionally wide given its ability to handle simulations of
scale, length, and complexity that were impossible
heretofore.
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FIG. 4 (color). A thin slice through the domain structure
formed in a simulation of A� B) 0 reaction in 3D. The
boundaries of the A-rich (red) and B-rich (blue) domains are
identified with the sides of Voronoi polyhedra shared by unlike
particles. The two domains are complementary and fill the space
when brought together.
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