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The attractive Hubbard model on the honeycomb lattice exhibits, at half filling, a quantum critical point
between a semimetal with massless Dirac fermions and an s-wave superconductor (SC). We study the
BCS-BEC crossover in this model away from half filling at zero temperature and show that the
appropriately defined crossover line (in the interaction-density plane) passes through the quantum critical
point at half filling. For a range of densities around half filling, the ‘‘underlying Fermi surface’’ of the SC,
defined as the momentum space locus of minimum energy quasiparticle excitations, encloses an area
which changes nonmonotonically with interaction. We also study fluctuations in the SC and the semi-
metal, and show the emergence of an undamped Leggett mode deep in the SC. Finally, we consider
possible implications for ultracold atoms in optical lattices and the high temperature SCs.
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The close connection between the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity and the phe-
nomenon of Bose-Einstein condensation (BEC) is clearly
revealed by studies of the BCS-BEC crossover problem
[1]. Experiments with dilute atomic gases in a harmonic
trap [2–7] have shown that one can access this crossover
by tuning the s-wave atom-atom scattering length as using
a magnetic field induced Feshbach resonance. The low
temperature phase of these atomic gases crosses over
from a BCS state for as < 0 to a molecular BEC for as >
0. Experiments [8,9] and theory [10–12] have also begun
to address the issue of strongly interacting fermionic atoms
in optical lattices. The ETH measurements [8] of the
population distribution in different bands upon tuning
through a Feshbach resonance were explained partially
by focussing on a single well in the lattice [10]. In addition,
it was conjectured that this system could show a band
insulator to SC transition with increasing interaction [10]
at low temperature; however, multiband effects cannot be
ignored [10], which complicates a microscopic analysis in
this case.

Motivated by exploring a simpler model which displays
such physics and can be realized using cold atoms, we
study the attractive Hubbard model,
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on a two-dimensional (2D) honeycomb lattice, with hop-
ping amplitude tij � t to nearest-neighbor sites and tij � t0

to next-nearest neighbors (see Fig. 1). Noninteracting fer-
mions (U � 0) at half filling (one fermion per site on
average) on this lattice form a semimetal, with the
‘‘Fermi surface’’ shrunk to Fermi points. This semimetal
behaves like a band insulator in some respects, displaying a
vanishing density of states at zero energy and two bands (a
‘‘conduction’’ and a ‘‘valence’’ band) which touch at the
two inequivalent Fermi points in momentum space as
shown in Fig. 1 (the two bands arise from having two sites

per unit cell on the honeycomb lattice). We show that
turning on interactions in this model leads to rich physics
associated with a semimetal-SC transition at half filling
and a BCS-BEC crossover away from half filling when U
becomes comparable to the kinetic energy�t. Bands other
than those in model (1) can, however, be ignored so long as
they are separated by interband gaps� U, t.

Compared to earlier studies of the BCS-BEC crossover
[13], our following results are unusual: (i) The conven-
tional BCS-BEC crossover is unrelated to any quantum
phase transition (QPT), describing the smooth evolution
from a weakly paired to a strongly paired SC state. By
contrast, model (1) at half filling exhibits a QPT between a
semimetal and a SC at a critical interaction, U � Uc.
(ii) Away from half filling, it displays a BCS-BEC cross-
over. As shown in Fig. 2(a), the appropriately defined BCS-
BEC crossover line in the interaction-density plane passes
through the quantum critical point (QCP) at half filling,
suggesting that the finite temperature normal state near the
crossover could be strongly influenced by this QCP, espe-
cially for small density deviations from half filling (‘‘small
doping’’). (iii) For small dopings, the ‘‘underlying Fermi
surface’’ (UFS) of the SC [14,15], defined as the momen-
tum space locus of minimum energy quasiparticle excita-
tions, exhibits nonmonotonic behavior with increasing U
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FIG. 1. Left: Honeycomb lattice showing basis vectors and the
two sites per unit cell, as well as the hopping matrix elements in
model (1). Right: Quasiparticle dispersion with Dirac nodes in
first Brillouin zone of the noninteracting semimetal.
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in contrast to its monotonically shrinking area in the con-
tinuum [14]. (iv) The fluctuations in the SC phase of model
(1) are like those of a two-band SC [16] and support an
undamped Leggett mode [17] deep in the BEC regime
[Fig. 3(a)]. (v) In contrast to a Fermi liquid, long wave-
length SC fluctuations in the semimetal have a damping
proportional to energy [Fig. 3(b)] due to the Dirac fermi-
ons. We discuss the relevance of some of these results to
the high temperature SCs in the concluding section.

Model and mean-field theory.—We write the parti-
tion function of model (1) as Z �

R
D �  exp��S�,
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to a site on the triangular lattice, and � � 1, 2 labels the
two sites within the unit cell (sublattice index). The ma-
trix elements h���k� are given by h11�k� � h22�k� � xk,
and h21�k� � h
12�k� � �k with xk � �2t0�cosk � â�
cosk � b̂� cosk � ĉ� �� and �k � �t�1� eik�b̂ �
e�ik�â�. Here â b̂ are unit vectors shown in Fig. 1, and ĉ �
â� b̂. We introduce [16,18] Hubbard-Statonovich fields
��;i��� to decouple the interaction term in the pair channel.
The mean-field theory (MFT) of the SC is obtained by
setting ��;i��� � �0, integrating out the fermions, and
extremizing the action with respect to �0. This leads to
the gap equation
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the excitation energy of Bogoliubov quasiparticles in MFT
with 	�k� � xk  j�kj, and N is the number of sites on
the honeycomb lattice. Using @FMF=@� � �Ne, the fer-
mion density n � Ne=N is

 n � 1�
1

N

X
��;k

	��k�
E�k

tanh
�
�E�k

2

�
: (3)

Figures 2(a) and 2(b) show the MF values of �0, �
obtained by numerically solving (2) and (3) over a range
of densities and interaction strengths.

At half filling (n � 1) and for t0 < t=3, the noninteract-
ing (U � 0) ground state is a semimetal with �0 � 0 and
� � 3t0. The single-particle spectrum consists of massless
Dirac fermions, centered around K � �4
=3; 0� and dis-
persing at low energy as 	�k� � vFjk�Kj, with a
Fermi velocity vF � t

���
3
p
=2. This leads to a linearly van-

ishing density of states (DOS) of single-particle excitations
at low energy, N�!� � �

���
3
p
=4
v2

F�! per spin, which ren-
ders the semimetal stable to weak attractive interactions in
contrast to a Fermi liquid. At large enough interactions
U >Uc, the semimetal becomes unstable to an ordered
state, similar to that in a model studied by Nozieres and
Pistolesi [20]. For t0 � 0, both SC and charge density wave
solutions are degenerate due to a special SU(2) symmetry.
This degeneracy is lifted at nonzero t0, and we find that the
SC state has lower energy justifying our Hubbard-
Stratonovitch decoupling in the pairing channel. The
mean-field gap �0 � �U�Uc� for U close to Uc while
for large U, �0 ’ U=2. We fix t0 � �0:15t, where Uc �
2:13t, and focus here only on the SC order and its fluctua-
tions. (For t0 � 0, MF, variational, and Monte Carlo nu-
merics yield estimates Uc � 2t–5t [21]).

Away from half filling, with a doping �n � n� 1, the
noninteracting ground state has small Fermi pockets cen-
tered around K, and is unstable to SC for an arbitrarily
small U. The DOS scales as
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FIG. 3 (color online). (a) Plot of the SC transition temperature
Tc � min�T0

c ; T


KT� (see text). Shaded region is the crossover

regime between Tc � T
0
c (‘‘BCS’’) and Tc � T



KT (‘‘BEC’’).

Region marked ‘‘Leggett,’’ beyond the dashed line, indicates
parameters where an undamped Leggett mode emerges. The
solid horizontal line at n � 1 is the semimetal terminating at a
QCP. (b) Spectral function (in arbitrary units) of SC fluctuations
in the semimetal at U � 2:1t. Small q fluctuations appear
critically damped, with the damping threshold being strongly
q dependent. Large q fluctuations can propagate as undamped
modes when close to the QCP.
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FIG. 2 (color online). (a) Plot of the mean-field gap �0=t
versus n and U=t (for t0 � �0:15t). White horizontal line at n �
1 is the semimetal phase terminating in a semimetal-SC tran-
sition at Uc=t � 2:13. Dashed lines indicate the BCS-BEC
crossover discussed in the text. The thick black line indicates
the parameters at which the underlying Fermi surface (UFS),
discussed in text and panels (b) and (c), shrinks to a point. The
light arrow indicates a possible trajectory of the Hamiltonian
discussed in the text. (b) Mean-field chemical potential �=t
versus U=t for indicated fillings (t0 � �0:15t). The dashed
line at � � 3t0 is a guide to the eye. (c) Schematic underlying
Fermi surface (see text), roughly circular loci around the nodes
K, drawn for parameters indicated by arrows in panel (b).
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Fermi energy. This weak coupling SC evolves into a BEC
regime at larger U.

(i) BCS-BEC crossover.—A mean-field estimate of the
crossover to the BEC regime is obtained by requiring that
the SC gap �0�U; �n� be larger than either (i) the Fermi
energy of the doped carriers in the noninteracting limit
��U � 0; �n� � 3t0 or (ii) the chemical potential
��U; n� � 3t0, where 3t0 � ��U � 0; �n � 0�.
Figure 2(a) shows this crossover line plotted using criterion
(i); however, both definitions yield the qualitatively similar
result that the BCS-BEC crossover line (defined away from
half filling) passes through the QCP (at half filling). If the
Hamiltonian describing the doped system lies on a trajec-
tory such as shown in Fig. 2(a), with a density dependent
U, then the system will undergo a BEC-BCS crossover for
parameters which lie close to the QCP; the finite tempera-
ture normal state near the crossover is then expected to be
strongly influenced by this QCP.

(ii) Underlying Fermi surface.—We define the under-
lying Fermi surface of the SC as the locus of points around
K where the quasiparticle excitation gap is a minimum
[14]. At weak coupling, this UFS is identical to the FS of
the doped metallic phase, which is approximately a circle
centered around K. Turning on interactions at small
doping leads to a strong change in �. In fact, for a range
of doping �n, with �n < 0 for t0 < 0, � goes from the
valence into the conduction band leading to the evolution
of the UFS as shown in Fig. 2(c). Eventually, at a large
enough gap, the UFS begins to decrease [22] as in the
continuum case [14]. The UFS is thus not related in any
way to the Fermi surface of the underlying metallic state
[14,15]. Strikingly, at a certain interaction value for low
doping we find � � 3t0; since the chemical potential then
sits at the node of the Dirac dispersion it leads to a pointlike
UFS as seen in Fig. 2(c). For this value of U, the strongly
interacting doped SC would appear, if naively viewed as a
weak coupling SC, to have descended from an undoped
semimetal.

Superfluid density, estimate of Tc.—Going beyond MFT,
we expand ��q��� � �0 ���q��� around its mean-field
value and integrate out the fermions to arrive at the effec-
tive action for order parameter fluctuations, SRPA �P
q�̂yqŴq�̂q, to second order in ��;q. Here q � �q; i!n�

and �̂q � ��1;q;�
1;�q;�2;q;�
2;�q; �
T defines the vector of

order parameter fluctuations on the 1, 2 sublattices. We
further separate the fluctuation into its amplitude (real) and
phase (imaginary) components [18] ��;q � �0�r�;q �
i’�;q	, and integrate out the (gapped) amplitude fluctua-
tions to obtain the effective 2� 2 matrix action for phase
fluctuations
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Diagonalizing this leads to two eigenmodes, the Goldstone
mode ’G and the Leggett mode ’L, with S�’	 �

��=2�
P
q��uq � jvqj�j’G;qj

2 � �uq � jvqj�j’L;qj
2	. The

zero temperature superfluid density Ds�0� is obtained by
examining the Goldstone mode action in the limit ! � 0.
In this static limit, amplitude and phase fluctuations de-
couple, and uq ! uq, vq ! vq simplify to
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where �, � � , and ��k are defined by sin2��k � �=E�k
and cos2��k � �	��k�=E

�
k. We numerically extract the

zero temperature superfluid stiffness Ds�0� by identifying
uq � jvqj � �

���
3
p
Ds�0�=2	q2 for jqj ! 0.

The SC-normal transition temperature at weak coupling
is mainly determined by the vanishing of �0 due to ther-
mally excited quasiparticles. The mean-field transition
temperature T0

c , where �0 ! 0, is obtained by generalizing
and solving the mean-field gap and number equations at
nonzero temperature. At strong coupling, Tc is governed
by the superfluid stiffness. We estimate the Kosterlitz-
Thouless (KT) transition temperature as T
KT �

Ds�0�=2. The SC transition temperature is then approxi-
mately given by Tc � min�T0

c ; T


KT�. Figure 3(a) displays

the crossover region between the BCS (Tc � T0
c ) and BEC

(Tc � TKT) regimes. We also find that the highest transition
temperature Tmax

c � 0:1t.
Leggett mode, Goldstone mode.—In order to study col-

lective modes in the SC, we retain time-dependent fluctua-
tions around the MFT, which couples amplitude and phase
fluctuations leading to a 4� 4 fluctuation matrix.
Examination of the four eigenmodes reveals that one
mode is gapless and corresponds to a linearly dispersing
Goldstone mode. The remaining three modes are gapped:
two of these correspond to amplitude fluctuations, while
the third mode corresponds to a Leggett mode [17] (rela-
tive fluctuations of’within a unit cell) of this ‘‘two-band’’
superfluid [16]. Integrating out the amplitude modes leads
to complicated expressions for uq, vq which will be pre-
sented in detail elsewhere [22]. Using these, we have
numerically evaluated the Goldstone mode velocity cG
[22], as well as the gap to the Leggett mode !L as a
function of U and n. At weak coupling, the Leggett
mode at q � 0 has weight only at energies above 2�0

and is strongly damped by the two-quasiparticle continuum
in the SC. With increasing U, however, it emerges un-
damped (below the continuum) in the regime indicated in
Fig. 3(a). !L=2�0 decreases monotonically with increas-
ing U in this regime. The Leggett mode can be excited by
making small oscillations in opposite directions of the
optical lattice potential on the two sublattices [22].

Fluctuations in the semimetal.—The Gaussian action in
the semimetal can be derived by studying fluctuations
around �0 � 0. We again separate the fluctuations into
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real and imaginary parts (these no longer have the meaning
of ‘‘amplitude’’ and ‘‘phase’’ fluctuations) and obtain the
propagator hr
�;qr�;qi � h’
�;q’�;qi from the fluctuation
matrix [22]. In Fig. 3(b), the spectral function A�q; !� �
Imhr
�;qr�;qi is plotted for various values of q at U � 2:1t.
The line shape of A�q; !� can be understood by analyzing
the DOS of the decay channel for SC fluctuations in the
semimetal, viz., two-particle excitations with total mo-
menta q. At q � 0, this is proportional to the single-
particle DOS in the semimetal and increases linearly
with energy. For small but nonzero q there is a threshold
vFjqj above which damping onsets. For large momenta,
the threshold again vanishes at the wave vector connecting
the Dirac nodes. Thus, the long wavelength SC fluctua-
tions, which have a gap Eg that vanishes as U ! Uc, are
critically damped (i.e., have damping � energy) if jqj<
Eg=vF. For larger q the mode begins to emerge from the
two-particle continuum and sharpens [see Fig. 3(b)]. For
large enough q it can propagate as an undamped mode for
U sufficiently close to Uc.

Discussion.—The honeycomb lattice attractive Hubbard
model exhibits a quantum phase transition between a semi-
metal and a SC, and a BCS-BEC crossover at low doping
which lies near the transition. Our work is of broad rele-
vance to other systems which support Dirac fermion ex-
citations such as the high temperature cuprate SCs. The
cuprate SCs have a d-wave order parameter and descend
from a Mott insulating antiferromagnet [23]. Nevertheless,
studies of the BCS-BEC crossover problem in lattice s-
wave SCs [1,18] clarified the physics of SCs with a large
pairing gap and a small superfluid density, and were rele-
vant to the understanding aspects of the pseudogap regime.
There are similar connections between our model and the
cuprates. (a) Superconductivity in the cuprates is widely
viewed as resulting from doping a spin liquid insulator
[23], a model relevant to the undoped spin liquid is the
staggered flux phase [24] which, in mean-field theory, has
nodal Dirac fermions similar to our undoped semimetal.
(b) The SC crosses over with increasing doping from a
strongly correlated (BEC-like) to a weakly correlated
(BCS-like) state [1], with the normal state above Tc at
optimal doping displaying proximity to an as-yet-unknown
QCP. (c) Recent photoemission experiments in underdoped
cuprates appear to find an anomalous metallic phase with a
pointlike FS as the normal state of underdoped cuprates
[25]. Our results on the crossovers in a SC state close to a
semimetal-SC QCP, and the evolution of the UFS in the
crossover regime could shed light on observations (b),(c) in
the cuprates. Given these connections, and also the viabil-
ity of realizing this model with ultracold atoms in an
optical lattice, it would be interesting to explore its phase
diagram in experiments.
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