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We show that atoms or molecules subject to fields that couple their internal and translational
(momentum) states may undergo a crossover from randomization (diffusion) to strong localization
(sharpening) of their momentum distribution. The predicted crossover should be manifest by a drastic
change of the interference pattern as a function of the coupling fields.

DOI: 10.1103/PhysRevLett.97.230402

It is well known that potential energy disorder added to a
spatial lattice of energy degenerate sites may cause local-
ization of an otherwise delocalized (hopping) quantum
mechanical particle [1]. This localization is crucially de-
pendent not only on the amount of disorder, but also on the
lattice dimensionality [1,2]. Here, we consider the hitherto
unexplored analogs of these phenomena in the momentum
space of a diffracted particle, due to correlations of internal
and translational states within the particle [2]. We show
that such translational-internal entanglement (TIE) may
incur disorder that causes a crossover from diffusion to
strong localization of the momentum distribution and
thereby a drastic change in the diffraction pattern, even
for particles with few internal levels.

The first point we must address is how to create the
intraparticle momentum-space analog of a perfectly or-
dered lattice, in which all sites have equal energy? The
free particle energy-momentum relation implies that each
momentum state carries a different energy. An ordered
lattice can however be achieved by correlating (entangling)
a selected set of discrete momentum states with eigenstates
of different degrees of freedom. This means that the cor-

responding states IIE,[, n), where hlz,, stands for the momen-
tum of state n, and g, for the energy eigenvalues of its
additional degrees of freedom, satisfy in an ordered,
momentum-space “‘lattice”
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for all n, n’. Such lattices obey the Floquet theorem, and
their eigenstates are Bloch states in momentum space. It
will be shown later that such TIE may also yield momen-
tum lattices which deviate from condition (1) and have
controllable dimensionality and disorder. For disordered
(aperiodic) lattices, the Floquet theorem does not hold. The
notion of correlations between different degrees of free-
dom is reminiscent of solid-state phenomena, such as the
coupling of transverse current modes in Thouless wires [3].
Here we bring out the unique controllability of localization
via entanglement.

In order to create such a TIE particle, consider a cold
atom or molecule (assuming a noninteracting ensemble
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thereof) initially prepared in a single internal state |0)
and in a narrow wave packet of momentum states centered

around hlgo. The state IIQO, 0) can next be coupled to a band

of N long-lived, nondegenerate states IIE,L, n) via Raman
near-resonant pairs of laser beams [see Fig. 1(a)], analo-
gously to [4]. In turn, these N states may be quasiadiabati-
cally Raman-coupled among themselves. Examples of
appropriate systems are atomic ground state hyperfine or
Zeeman sublevels, multiplets of circular Rydberg states, or
rovibrational bands of a molecular ground state. Following
the outlined quasiadiabatic Raman sequence, the system
occupies a lattice of entangled momentum-internal states,
whose dimensionality and disorder are controllable by the
Raman couplings, as detailed below.

The system Hamiltonian H¢ and the dipolar system-field
interaction Hamiltonian H; in the Rotating Wave
Approximation (RWA) are [5]

N
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Here, IEn, n)g are the states of the stable (long-lived) band
with momenta (hk,) . and energies hw'®, whereas Hk,, e}y
refer to states of a far-detuned, intermediate unstable

(electronically-excited) band. The + and — steps of the
Raman coupling consist, respectively, of virtual (off-

e - S > )
resonant) transitions |k, n), < [k,, e}) < |k,, n'), via
pairs of laser beams with frequencies v, , and v_, and
respective wave vectors ¢ ,, ¢—,. The corresponding

Rabi frequencies are Q,(,ﬁ) and Q;,). The frequencies are
chosen such that v, —v_, = wff,’) — . Hence, the
two-step Raman process |k, ny, — &,y n' ), is near-
resonant only for a chosen pair of laser beams, causing
energy and momentum transfer of A(v,, —v_,) and
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FIG. 1 (color online). (a) Proposed setup: the internal states of
a cold atom (or molecule) are mixed by pairs of Raman beams
and become entangled with different momentum states. Full
lines indicate an ordered lattice of energies, dashed lines—a
disordered lattice. (b) Momentum-space dimensionalities 1D,
2D, D, illustrated by lattice graphs with different connectiv-
ities. (¢) Numerical Raman coupling strengths in log scale for Li
atoms in a 1D setup (for parameters at paper end).

WG+, — G- ), respectively. Upon transforming to the
rotating frame and upon adiabatically eliminating [5] the
intermediate unstable states I{lge, e}) from the Schroedinger
equation, we end up with the following pairwise coupling
equations for the eigenstate amplitudes c,, and ¢,

. ]

Cp = %(En’cn’ + Jnn’cn)J
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Here we have assumed sufficiently weak fields to neglect
power broadening corrections (ac Stark shifts), as well as
the off-resonant linewidths of the far-detuned fields
'yeg[le,ie)/(Vi,n - w(e) - wgg))]z < Yeg-

Even with the near-resonant Raman selectivity imposed
on (3), it allows for rich, complex dynamics. Here we wish
to map (3) onto known models of strong localization [1].
To this end, we require

(&) _

Vip = Vo T @) wif,') = const.;
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J,» = J = const.

These requirements amount to adjusting the frequencies
v+, and the two-step Rabi-frequency product to be inde-

pendent of n, n'. The momenta hk, = h(k, + Gim —
g-.,) are separately controlled to give equal diagonal
energies (ordered lattice) or random energies E, (disorderd
lattice). The disorder is measured in terms of the width A
of the flat (uncorrelated) distribution of on-diagonal ener-
gies, such that the random E,, € [—A/2, A/2].

Our setup allows the creation of momentum-space con-
figurations with any effective dimensionality. This dimen-
sionality is not related to the spatial dimensionality of the
atomic or molecular ensemble, but rather to the off-
diagonal coupling terms. A 1D momentum-space lattice

is created by resonantly coupling states IE,,, n) with the

states |E,,+1, n + 1) and vice versa. In order to fulfill peri-
odic boundary conditions, in a system of finite-size N, we

couple |ky, N) < |kj, 1). The single-particle Hamiltonian
describing the system in the entangled basis |k;, i) is rep-
resented by the matrix

E —-J 0 o - —J
-J E, —J 0 o -

H=| 0 —-J E3 —J 0 - | 5)
-J 0 -+ 0 —J Ey

The ability to satisfy Egs. (3) and (4) so that (5) is realized
is numerically demonstrated in Fig. 1(c): laser-beam pairs
selectively couple level pairs with equal J but random E,,.

By adding Raman resonant laser-beam pairs, such that
each state (“lattice site’”) is coupled to an increasing
number of other “sites,” the Hamiltonian emulates a sys-
tem of higher dimensionality. Thus, 1D, 2D, and 3D “lat-
tices” are realized when each ‘‘site” has 2, 4, and 6
neighbors, respectively, [see Fig. 1(b)]. Specifically, we
assume the number of sites N equals the system size L in
1D, L? in 2D, and L? in 3D. Therefore, the neighbors of
site i in 1D are i = 1, in 2D the neighbors i = L are added,
and in 3D the neighbors i + L? are added. This dimension-
ality argument holds as long as all N “sites” have the same
connectivity [1], as we assume in the following. In the N —
oo (thermodynamic) limit, this system is equivalent to
either a perfect or a disordered infinite lattice, depending
on A.

As is well known, in 1D any amount of random disorder
causes localization [1]. In Fig. 2, we present the results of
our 1D lattice calculations for the adiabatic ramping-up of
the two-photon coupling J, and different values of the
diagonal disorder A. We plot the ground state 1D momen-

tum distribution for N = 10 different states IEn, n). It can
be seen that finite-size effects, resulting from the finite
number of states N, are manifest as an artificial “localiza-
tion crossover” in this 1D configuration (this occurs also in
2D): the localization length increases with a reduction in
the strength of the disorder, until, for small enough disor-
der, the localization length exceeds the length of the sys-
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FIG. 2 (color online). Momentum distribution for random sys-
tems with (A/J) = 1 (dashed line) and (A/J) = 10 (solid line),
in a 1D system with N = 10 states, compared to a periodic
(regular) system with (A/J) = 10 (dotted line). The random
momentum distribution is delocalized for (A/J) = 1, while
strong localization appears for (A/J) = 10. The periodic distri-
bution is not localized for (A/J) = 10. A localization crossover
is found even though a random 1D system should not exhibit a
transition, due to finite-size effects.

tem, causing the momentum distribution to appear
delocalized.

In order to quantify the localization crossover for each
effective dimensionality, one can use the ground- state
momentum distribution and apply such standard measures
as the entropy or the Inverse Participation Ratio (IPR) [6].
We suggest a different localization measure, appropriate
for atomic or molecular interferometry [7,8]: (a) Consider
an internally structured particle that is incident upon an
interferometer in a state with a narrow momentum distri-
bution and an arbitrary superposition of internal-energy
eigenstates [n):

(Flipn) = R 7S, In). (©6)

In a Mach-Zehnder Interferometer (MZI), it is split be-
tween two alternative, interfering paths, 7, and 7,. Because
of the internal-translational factorization, such a state can
exhibit a high-visibility interference pattern [7]. (b) By
contrast, the output state resulting from TIE propagation
in the MZI is

Fthou) = FOmglny = S c,e™ G n), (1)
n

where ¢, and En are subject to Egs. (3) and (4) above. The
averaging of the detection probability of state (7) over |n)
tends to wash out the interference fringes:

Tr P o ol P} = Y le, Peos?[k, - (7 — )] (8)

Thus, the width of the momentum distribution of such a
TIE particle is directly related to the visibility of the
interference fringes measured by passing this particle
through a MZI. Specifically, for a flat distribution of
—Smk(:zL)], assum-
ing k, = kyn and system size L. Thus, the visibility scales
as 1/L, approaching zero for L — co. By contrast, for a
localized distribution |c,|> ~ e~ 7", the interference pattern

becomes § + 4y22+4k5[y cos(kgL) + kg sin(kgL)]. The visi-

lc,|?, the interference pattern (8) is $[1 +

4y(y+k)
4y?+4i%

size L, and it approaches 1 in the localized limit y > k. In
Fig. 3(a), we plot the visibility of the interference pattern as
a function of the disorder A/J for a 3D system, showing a
crossover from a delocalized state (low visibility) to a
localized state (high visibility).

It is possible to distinguish between an artificial transi-
tion caused by finite-size effects and a true transition, by
checking the scaling of the “crossover” point (A/J)¢ as a
function of system size. The crossover point is found upon
adiabatically ramping-up the coupling for different values
of A/J and calculating the visibility for the resulting
momentum distribution. A true transition should occur at
the discontinuity point of the derivative of the visibility,
i.e., it should jump from zero to its maximal value. Due to
finite-size effects, the smoothed crossover is at the point of
the maximal derivative of the visibility (as a function of
A/J), which remains continuous.

In Fig. 3(b), it can be seen that for 1D, the crossover
point flows toward (A/J)c = 0 (this occurs for 2D as
well), indicating that there is no thermodynamical transi-
tion, and the system is always localized. A 3D momentum-
space lattice, which is more difficult to realize experimen-
tally due to the large number of Raman pairs needed,
exhibits a true localization transition as N — co. In
Fig. 3(c), we plot the transition point as a function of N,
displaying the finite-size scaling. In this case, the transition
point flows toward a finite, nonzero value.

Can we emulate an infinite-dimensional (but finite- size)
momentum-space lattice? Instead of the matrix (5), infinite
dimensionality corresponds to non-zero coupling terms in
all off-diagonal elements. Such a setup would obviously
require a prohibitively large number of Raman pairs.
However, by coupling every level to the initially populated
level, for which the number of Raman pairs needed is
equivalent to that of the 1D case, the system is governed
by a Hamiltonian which is similar to that of an infinite
dimensional system of the states n = 2... N (in the sense
that all eigenstates are thermodynamically delocalized). It
is known that the Anderson model of infinite dimension-
ality does not have a phase transition [9]: the system
remains delocalized, with the “‘crossover” point flowing
to infinity (or, more precisely, scaling as V). This is shown
in Fig. 3(d), where we plot the transition point as a function
of the system size.

In addition to true disorder (uncorrelated random ener-
gies), it is possible to study the behavior of systems with
quasiperiodic structure. It is known (see, e.g., [10]) that for
this type of perturbation of the diagonal energies, a local-
ization transition occurs even in 1D at (A/J). = 2. We
show in Fig. 3(b) that, in contrast to true disorder in 1D, a
quasicrystal in 1D exhibits flow indicating a true transition
as N — oo, at the aforementioned value. Furthermore, our
setup may be extended, by modifying the energies and
couplings, to model more elaborate multidimensional sys-
tems, such as lattices with long-range interactions.

bility is then

i.e., it does not depend on the system
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(a) Visibility of the interference fringes as a function of A/J, in a 3D system. (b) True disorder: flow of the

crossover point to zero in a 1D system, calculated (dots) and exponentially fitted (solid line). Quasicrystal: flow of the crossover to
(A/J)¢ = 2, calculated (squares) and linearly fitted (dashed line), indicating a true transition. (¢) True disorder for a 3D system. The

crossover point flows to (A/J)¢ = 10, indicating a true transition.

An experimental demonstration may involve ultracold
Li atoms, which allow significant momentum to be im-
parted by laser beams. The atoms can be outcoupled from a
Bose-Einstein condensate, and prepared in an initial state
|F =1, mp = —1, ky), with a velocity of vy = 10 cm/ sec
and an energy of E, =74 kHz. This state can then be
Raman-coupled to the Zeeman-split m states of levels F' =
1 and F = 2, providing a total of 8 accessible levels. Such
a small number of levels cannot reproduce 3D effects, but
can provide measurable scaling results for the 1D [(Eq. (5)]
and effective coD Hamiltonians. These levels are acces-
sible using pairs of laser beams (far detuned by hundreds of
GHz from the single-photon resonance) and detuned from
each other with an accuracy of ~1 kHz by means of
acousto-optic modulators (AOMs). These laser-beam pairs
have been numerically shown to create momentum states
with energies in the range of 0-300 kHz, whose separation
allows the neglect of off-resonant couplings (unaccounted
for by Eq. (3)—see Fig. 1(c)]. Random energies are real-
ized by randomly setting the angles between the beams.
The desired coupling strengths and quasiadiabatic control
over them can be easily achieved. A MZI can be realized as
in [11], with interference fringes recorded by counting the
number of atoms in the two scattered clouds in a time-of-
flight image. Molecular or Rydberg atom experiments with
larger N may be feasible [7], but merit separate discussion
of conditions (3) and (4).

To conclude, we have studied an intriguing fundamental
effect: strong localization of the momentum distribution of
particles subject to TIE and interstate mixing. It may be
revealed by interferometry of such particles. Remarkably,
even few-level diffracted particles allow for measurable
scaling effects that bear the signature of strong
localization.

(d) Same for an oD system: crossover flows to co.
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