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We demonstrate how a colloidal version of artificial ice can be realized on optical trap lattices. Using
numerical simulations, we show that this system obeys the ice rules and that for strong colloid-colloid
interactions, an ordered ground state appears. We show that the ice-rule ordering can occur for systems
with as few as 24 traps and that the ordering transition can be observed at constant temperature by varying
the barrier strength of the traps.
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In certain spin models, the geometric spin arrangements
frustrate the system since not all of the nearest neighbor
spin interaction energies can be minimized simultaneously
[1]. A classic example of this is the spin ice system [2,3],
named after the similarity between magnetic ordering on a
pyrochlore lattice and proton ordering in water ice [4].
Spin ice behavior has been observed in magnetic materials
such as Ho2Ti2O7, where the magnetic rare-earth ions form
a lattice of corner-sharing tetrahedra [2]. The spin-spin
interaction energy in such a system can be minimized
locally when two spins in each tedrahedron point inward
and two point outward, leading to exotic disordered states
[5]. There are several open issues in these systems, such as
whether long-range interactions order the system, or
whether the true ground state of spin ice is ordered [6].

In atomic spin systems, the size scale is too small to
examine ordering on the individual spin level directly, and
very low temperatures are required to freeze the spins.
Artificial versions of spin ice systems that overcome these
limitations would be very useful. In a recent experiment, a
geometrically frustrated system was constructed from a
square lattice of small, single-domain magnetic islands
[7]. Each vertex of the lattice represents a meeting point
for four spins. Wang et al. demonstrated that the system
obeys the ‘‘ice rules’’ of ‘‘two spins in, two spins out’’ at
each vertex for closely spaced islands, and has a random
spin arrangement for widely spaced islands. Unlike in
atomic systems, it is possible to image the ground state
of the resulting spin ice directly using a scanning probe.

Here, we propose another version of an artificial spin ice
system in which both statics and dynamics can be probed
directly. We use numerical simulations to show that square
ice as well as other frustrated states can be constructed
using interacting colloidal particles confined in two-
dimensional (2D) periodic optical trap arrays. Because of
the micron size scale of the colloids, the ordering and
dynamics could be imaged with video microscopy in an
experiment. The colloidal system may also equilibrate
much more rapidly than the nanomagnet system, since
thermal fluctuations are present and can be controlled by

changing the relative strength of the optical traps. In addi-
tion, the colloidal interaction can be changed from nearest
neighbor to longer range simply by adjusting the screening
length. A variety of different static and dynamical trap
geometries can be constructed with optical arrays [8],
and colloidal crystallization and melting have already
been demonstrated in square and triangular optical trap
arrays [9,10]. It is also possible to make arrays with elon-
gated traps that have a double well shape such that a single
colloid can be located in either well [11,12]. Colloid-
colloid interaction forces between neighboring traps were
strong enough to induce a zigzag ordering and permit
signal propagation in an experiment on a chain of 23
double-well elongated traps [11].

We consider an artificial ice system created with charged
colloids on a square lattice of elongated optical traps at a
one-to-one filling. Each trap has a double well potential
similar to those created experimentally [10,11] The verti-
ces where four traps meet correspond to the oxygen atoms
or the pyrochlore tetrahedrons, and the charged colloidal
particles model the ‘‘in’’ or ‘‘out’’ spins. We classify the
resulting six vertex types [13] according to their electro-
static energy, and study the change in the occupancy of
different vertex types as a function of colloid charge and
trap spacing. For noninteracting colloids we find random
occupancy of each vertex type. When the colloid charge is
increased, ice-rule obeying vertices dominate the system.
At high interaction strengths, we find a long-range ordered
minimum energy state predicted previously for spin ice
systems [6]. We can recover the random vertex occupancy
at high colloid charge by increasing the spacing between
traps. When the traps are gradually biased in one direction,
we obtain a transition between two ice-rule obeying ground
states. Since it can be difficult to construct very large arrays
of traps experimentally, we show that a system with as few
as 24 traps and open boundary conditions still exhibits the
ordering transition observed for larger arrays. Previous
experiments focused on order-disorder transitions for col-
loids as a function of increasing trap strength [10]. Thus,
we also demonstrate that the spin ordering transition oc-
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curs at constant temperature when the trap barrier strength
is varied.

We perform 2D Brownian dynamics (BD) simulations
for systems of two sizes. System A contains N � 1800
interacting colloids and N � 1800 optical traps with peri-
odic boundary conditions in the x and y directions. System
B has N � 24 colloids and N � 24 optical traps with open
boundary conditions. In each case the overdamped equa-
tion of motion for colloid i is:

 �
dRi

dt
� Fcci � FTi � Fext

i � Fsi ; (1)

where the damping constant � � 1:0. We define the unit of
distance in the simulation to be a0. The colloid-colloid
interaction force has a Yukawa or screened Coulomb form,
Fcci � �F0q2 PN

i�jriV�rij� with V�rij� � �1=rij��
exp���rij�. Here, rij � jri � rjj, r̂ij � �ri � rj�=rij, ri�j�
is the position of particle i�j�; F0 � Z�2=�4���0�, Z� is the
unit of charge; � is the solvent dielectric constant; q is the
dimensionless colloid charge; and 1=� is the screening
length, where � � 4=a0 unless otherwise mentioned. We
neglect hydrodynamic interactions between colloids,
which is a reasonable assumption for charged particles in
the low volume fraction limit. The thermal force FT is
modeled as random Langevin kicks with the properties
hFTi i � 0 and hFT�t�FT�t0�i � 2�kBT��t� t

0�. Unless oth-
erwise mentioned, FT � jFT j � 0. Fext

i represents an ex-
ternally applied drive which is set to zero except for the
biased system, where Fext

i � Fdc�x̂� ŷ�.
The substrate force Fsi arises from elongated traps,

shown schematically in Fig. 1(a), arranged in square struc-
tures with lattice constant d, as in Fig. 1(b). Each trap is
composed of two half-parabolic wells of strength fp and
radius rp separated by an elongated region of length 2l
which confines the colloid perpendicular to the trap axis
and has a small repulsive potential or barrier of strength fr
parallel to the axis which pushes the colloid out of the
middle of the trap into one of the ends: Fsik �
�fp=rp�r

�
ik��rp � r�ik�r̂

�
ik � �fp=rp�r

?
ik��rp � r?ik�r̂

?
ik �

�fr=l��1 � rkik���l � rkik�r̂
k
ik. Here r�ik � jri � rpk � lp̂

k
k
j,

r?;kik � j�ri � rpk � 	 p̂k
?;kj, ri (rpk ) is the position of colloid i

(trap k), and p̂k
k

(p̂k?) is a unit vector parallel (perpendicu-
lar) to the axis of trap k. We take 2l � 2a0, rp � 0:4a0, and
d � 3a0 unless otherwise noted. Elongated traps of this
form have been created in previous experimental work
[11,12]. Our dimensionless units can be converted to physi-
cal units for a particular system. For example, when a0 �
2 �m, � � 2, and Z� � 300e, such as in Ref. [14], F0 �
2:5 pN and the trap ends are 0:2 �m apart at d � 3. We
find the ground state of each configuration using simulated
annealing.

The vertices are categorized into six types, listed in
Table I, and we identify the percentage occupancy Ni=N
and energy Ei of each type. Type III and type IV vertices
each obey the ice rule of a two-in two-out configuration,

represented here by two colloids close to the vertex and
two far from the vertex. Locally, the system would prefer
type I vertices, but such vertices must be compensated by
highly unfavorable type VI vertices. The colloidal spin ice
realization differs from the magnetic system, where north-
north and south-south magnetic interactions at a vertex
have equal energy. For the colloids, interactions between
two filled trap ends raise the vertex energy Ei, whereas two
adjacent empty trap ends decrease Ei. Since particle num-
ber must be conserved, creating empty trap ends at one
vertex increases the particle load at neighboring vertices.
As a result, the ice rules still apply to our system, but they
arise due to collective effects rather than from a local
energy minimization.

In Fig. 1(b) we illustrate a small part of system A with
noninteracting colloids at charge q � 0. The distribution of
Ni=N is consistent with a random arrangement. When we
increase q to q � 1:3 so that the colloids are strongly
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FIG. 1. (a) Schematic of the basic unit cell with four double
well traps each capturing one colloid. (b)–(d) Images of a small
portion of system A with N � 1800. Dark circles: colloids;
ellipses: traps. (b) Random vertex distribution at q � 0.
(c) Long-range ordered square ice ground state at q � 1:3.
(d) Biased system at q � 0:4 with Fdc � 0:02.

TABLE I. Electrostatic energy Ei=EIII for each vertex type. An
example configuration for each vertex is listed; 1 (0) indicates a
colloid close to (far from) the vertex.

Type Configuration Ei=EIII Type Configuration Ei=EIII

I 0000 0.001 IV 1001 7.02
II 0001 0.0214 V 1101 14.977
III 0101 1.0 IV 1111 29.913
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interacting, we find a nonrandom configuration where the
system is filled with type III vertices in a checkerboard
pattern corresponding to the square ice ground state [15],
illustrated in Fig. 1(c). We find similar behavior in system
B containing only 24 traps, which may be easier to realize
in an experiment.

We use Ni=N to map the transition between the random
state and the long-range ordered state as a function of
colloid charge q at fixed trap spacing d � 3 and � � 4:0
in Fig. 2(a), as a function of d for fixed q � 1:3 and � �
4:0 in Fig. 2(b), and as a function of � for fixed q � 1:0 and
d � 3 in Fig. 2(c). Changing q, d or � changes the relative
colloid-colloid interaction strength. In Fig. 2(a), NI=N and
NVI=N decrease with increasing q for q > 0:1, since this is
the most energetically unfavorable vertex combination. As
q increases above q > 0:3, NII=N, NV=N and NIV begin to
decrease since type II, V, and IV vertices are also energeti-
cally unfavorable. Even though type IV vertices obey ice
rules, they disappear at high q since in square ice they have
higher energy than the type III vertices, which ultimately
form the ground state.

In Fig. 2(b) we fix q � 1:3 and � � 4:0 and show that
changing the trap spacing d from d � 3 to d � 5 produces
the same transition as changing the colloid charge. As d
increases, the colloid-colloid interaction strength drops,
and the vertices that were suppressed by the high colloid
charge q reappear in the same order: types II, V, and IV
first, followed by types I and VI. If q and d are fixed and the
inverse screening length � is varied, we find that a similar
transition from an ordered to a random configuration oc-
curs, as illustrated in Fig. 2(c) for d � 3 and q � 1:0. In
experiments with dynamic optical traps, it would be
straightforward to adjust the trap spacing d, allowing
both random and ordered limits to be accessed readily.

The appearance of an ordered state for small trap spacing
is similar to experimental observations of spin liquid order-
ing under pressure [16].

From these results we see that a colloidal system can
serve as a model for artificial ice. The advantage of the
colloid realization is that it is possible to directly observe
the dynamical behavior of the individual ‘‘spins.’’ It is also
possible to create more complex systems than can be
achieved with the magnetic system. For instance, to create
biased traps, we introduce a small driving force oriented at
a 45
 angle along the diagonal of the square plaquettes.
This causes the colloids to favor sitting in the topmost and
rightmost halves of the traps, and breaks symmetry in the
same way as applying a magnetic field along the [100]
direction in a pyrochlore system [17–20]. In Fig. 1(d) we
illustrate the ground state of a system biased in this way
with q � 0:4, d � 3, � � 4, and Fdc � 0:02. All of the
traps are effectively tilted in the rightward and upward
directions, and the system has a ground state made up
entirely of type IV vertices. In Fig. 2(d), we see that in
the biased system, increasing q produces a transition be-
tween the tilted and the spin ice ground states. At the
transition, we find vertex clusters composed entirely of
type III or type IV vertices, with pairs of type II and type
V vertices located at the boundaries between the clusters.
Type I and type VI vertices never appear in this system.

In experimental systems using current equipment, a
limited number of optical traps are available. For example,
23 traps were employed in recent experiments on double
well elongated traps [11]. It is therefore pertinent to de-
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FIG. 2. �: NI=N; �: NII=N; �: NIII=N; �: NIV=N; �: NV=N;
�: NVI=N. (a) Ni=N vs q at d � 3 and � � 4:0. (b) Ni=N vs d at
q � 1:3 and � � 4:0. Inset: schematic spin representation of the
6 vertex types. (c) Ni=N vs � at d � 3 and q � 1:0. (d) Ni=N vs
q for a biased system at d � 3, � � 4:0, and Fdc � 0:02.
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FIG. 3. (a),(b) Images of the entire sample for system B, with
N � 24 and open boundary conditions at d � 3, q � 1, � � 4:0,
and FT � 0:9. (a) Disordered system at fr � 0:01. (b) Square
ice ground state at fr � 0:10. (c) The number of defects Nd
versus temperature FT for the same system with fr � 0:03
(closed circles), fr � 0:07 (open squares), fr � 0:1 (closed
diamonds), and fr � 0:15 (open triangles). (d) A phase diagram
showing the ordered and disordered states as a function of FT vs
fr.
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termine how small of a system can still exhibit the artificial
ice behavior. Additionally, experimental systems have no
periodic boundary conditions, so it is important to under-
stand whether the boundaries affect the response of the
system.

In Figs. 3(a) and 3(b) we illustrate two configurations of
system B, which contains 24 traps and has open boundary
conditions, for the case q � 1:0, d � 3:0, and � � 4:0 at a
temperature FT � 0:9. A disordered configuration, shown
in Fig. 3(a), results when the strength of the repulsive
barrier at the center of each trap, fr � 0:01, is small.
Here the thermal effects are strong enough that the colloids
are hopping between the two different wells in each trap.
As fr is increased, a freezing transition occurs and the
system forms the ordered phase, seen in Fig. 3(b) for
fr � 0:10. To quantify the ordering transition, we measure
the time-averaged number of defects in the system, Nd,
which is determined by comparing the colloid configu-
ration C with the two possible ground states for the
24 traps: G, shown in Fig. 3(b), and G0, obtained by
flipping each colloid in Fig. 3(b) to the opposite side of
each trap. We takeNd�hmin�

PN
i jCi�Gij;

PN
i jCi�G

0
ij�i,

where jCi �G
�0�
i j � 0 �1� if colloid i is at the same (oppo-

site) end of the trap in the two configurations. A plot of Nd
versus FT in Fig. 3(c) shows that as FT is decreased, there
is a freezing transition into the ordered state whereNd � 0.
The freezing temperature decreases as fr is lowered. The
most straightforward experiment to perform would be to
fix temperature and the other parameters while varying the
strength of the barrier at the center of the traps, fr. To
illustrate that the order-disorder artificial ice transition can
also occur as a function of barrier strength, we map out a
phase diagram as a function of fr and FT in Fig. 3(d). This
shows that for systems as small as 24 traps, the artificial ice
behavior should be experimentally observable.

All of the systems we have studied up to this point have a
well-defined, long-range ordered ground state. We have
also found that if a honeycomb arrangement of traps is
used instead of the square trap arrangement considered
here, only disordered ground states occur [21].

In conclusion, we have shown that an artificial ice model
system can be created using charged colloidal particles in
arrays of elongated optical traps. The system obeys the ice
rules and shows a transition between a random configura-
tion and a long-range ordered ground state as a function of
colloid charge, trap size, and screening length. We dem-
onstrate that a thermally induced order-disorder transition
also occurs in samples with only 24 traps and open bound-
ary conditions, which should be well within the range of
current experimental capabilities. This transition can be
observed at fixed temperature by varying the trap barrier
strength, which would be the most straightforward experi-
ment to conduct. Besides optical traps, other systems in-
cluding electrophoretic traps [22] or patterned surfaces

may also be used to confine the colloids. Similar effects
should occur for vortices in type II superconductors inter-
acting with elongated arrays of blind holes. Experimental
versions of frustrated colloidal systems could allow for
direct visualization of the dynamics associated with frus-
trated spin systems, such as deconfined or confined spin
arrangements, as well as spin dynamics at melting
transitions.

This work was supported by the U. S. Department of
Energy under Contract No. W-7405-ENG-36.

Note added.—Recently, a simulation study [23] of the
experimental dipolar system appeared.

[1] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
[2] M. J. Harris et al., Phys. Rev. Lett. 79, 2554 (1997).
[3] S. T. Bramwell and J. M. Harris, J. Phys. Condens. Matter

10, L215 (1998); S. T. Bramwell and M. J. P. Gingras,
Science 294, 1495 (2001).

[4] P. W. Anderson, Phys. Rev. 102, 1008 (1956); L. Pauling,
The Nature of the Chemical Bond (Cornell University,
Ithaca, NY, 1960), p. 465.

[5] R. Moessner and A. P. Ramirez, Phys. Today 59, No. 2, 24
(2006).

[6] R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, Phys.
Rev. Lett. 87, 067203 (2001); R. Siddharthan, B. S.
Shastry, and A. P. Ramirez, Phys. Rev. B 63, 184412
(2001).

[7] R. F. Wang et al., Nature (London) 439, 303 (2006).
[8] D. G. Grier, Nature (London) 424, 810 (2003).
[9] P. T. Korda, G. C. Spalding, and D. G. Grier, Phys. Rev. B

66, 024504 (2002); C. Reichhardt and C. J. Olson, Phys.
Rev. Lett. 88, 248301 (2002); K. Mangold, P. Leiderer,
and C. Bechinger, ibid. 90, 158302 (2003).

[10] M. Brunner and C. Bechinger, Phys. Rev. Lett. 88, 248302
(2002).

[11] D. Babic and C. Bechinger, Phys. Rev. Lett. 94, 148303
(2005); D. Babic, C. Schmitt, and C. Bechinger, Chaos 15,
026114 (2005).

[12] C. Schmitt, B. Dybiec, P. Hanggi, and C. Bechinger,
Europhys. Lett. 74, 937 (2006).

[13] R. Youngblood, J. D. Axe, and B. M. McCoy, Phys. Rev. B
21, 5212 (1980).

[14] M. F. Hsu, E. R. Dufresne, and D. A. Weitz, Langmuir 21,
4881 (2005).

[15] F. H. Stillinger and K. S. Schweizer, J. Phys. Chem. 87,
4281 (1983).

[16] I. Mirebeau et al., Nature (London) 420, 54 (2002).
[17] M. J. Harris et al., Phys. Rev. Lett. 81, 4496 (1998).
[18] A. P. Ramirez et al., Nature (London) 399, 333 (1999).
[19] H. Fukazawa et al., Phys. Rev. B 65, 054410 (2002).
[20] Z. Hiroi et al., J. Phys. Soc. Jpn. 72, 411 (2003).
[21] A. Libál, C. Reichhardt, and C. J. Olson Reichhardt (to be

published).
[22] A. E. Cohen, Phys. Rev. Lett. 94, 118102 (2005).
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