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A high-pressure technique is introduced which allows a continuous variation of the inclusion size in
liquid crystal colloids. We use a nematic liquid crystal host into which micrometer-sized gas bubbles are
injected. By applying hydrostatic pressures, the diameter of these gas bubbles can be continuously
decreased via compression and absorption of gas into the host liquid crystal, so that the director
configurations around a single bubble can be investigated as a function of the bubble size. The
theoretically predicted transition from a hyperbolic hedgehog to a Saturn-ring configuration, on reduction
of the particle size below a certain threshold, is confirmed to occur at the radius of a few micrometers.
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When particles are suspended in a liquid crystal matrix,
in which elongated molecules are aligned along a common
direction called the director, long-range interparticle forces
mediated by elastic deformations of the director field
emerge [1–5]. Because of this nonclassical interparticle
interaction, colloidal particles in nematic liquids sponta-
neously form a rich variety of ordered structures such as
linear chains [6,7] or two-dimensional lattices [8,9].
Possible applications of these soft ordered structures are
currently being explored, for example, as a tunable pho-
tonic crystal [10].

For a spherical particle immersed in a uniformly aligned
nematic liquid crystal with a strong homeotropic alignment
at the particle-liquid crystal interface, two distinct director
configurations are possible depending on the particle size
as shown in Fig. 1: a hyperbolic hedgehog configuration
[11–13], consisting of a�1 pointlike defect located on one
side of the polar axis of the particle, and a Saturn-ring
[14,15] configuration that literally involves a �1=2 line
defect around the equator of the particle. The hyperbolic
hedgehog structure, being asymmetrical about the equator
plane, yields a long-range orientational distortion that is
dipolar in nature. The Saturn-ring configuration, on the
other hand, is symmetrical about the equator, thereby
making it quadrupolar. The detailed energetics of the hy-
perbolic hedgehog and Saturn-ring configurations has been
theoretically studied, along with the interparticle forces
giving rise to the multiparticle clusters [14–18], and pre-
dicted the existence of a configurational transition from
one state to the other as the particle size is changed [4,5].

So far, however, the experimental investigations to test
the particle-size-induced transition have been hampered by
the invariability of the particle size [19].

In this Letter, a high-pressure technique will be intro-
duced to overcome these limitations. We use a nematic
liquid crystal host into which micrometer-sized gas bub-
bles are injected, and, by applying a hydrostatic pressure,

the diameter of these gas bubbles is continuously varied.
We demonstrate the transition from a dipolar hyperbolic
hedgehog configuration to a quadrupolar Saturn-ring con-
figuration, as predicted theoretically, when the particle size
is continuously decreased.

The nematic liquid crystal (4-pentyl-4’-cyanobiphenyl:
5CB) is sandwiched in a parallel cell consisting of two
circular glass plates (30 mm �, thickness 2 mm), the
internal surfaces of which are coated with a planar aligning
agent. The two glass plates are glued together at the center
to fix the gap at ca. 900 �m, while keeping the periphery
open for bubble injection.

Air bubbles are injected through a heat drawn micro-
aperture of a 100 �m diameter quartz capillary (Moritex)
connected to an air pump; see Fig. 2. The capillary tip is
pulled over a gas burner or in a laser capillary puller (Sutter
Instrument, Model P-200), and its aperture diameter can be
controlled between 1 and 20 �m. The injection of uniform
air bubbles is achieved by creating a constant relative
motion between the capillary tip and the liquid crystal
between 5 and 40 cm=s, realized by constant rotation of
the sandwich cell. The air flow through the capillary is
controlled by varying the capillary length l at a constant
pressure difference �p according to Hagen-Poiseuille’s
law, indicating that the flow rate is proportional to �p=l.

 

FIG. 1. Schematic illustrations of (a) a dipolar configuration
with a hyperbolic hedgehog and (b) a Saturn-ring configuration.
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After the injection of the air, the sandwich cell is put into
a custom-built high-pressure chamber which is connected
via a pressure regulator to a nitrogen bottle and which
allows the application of high pressure of up to about
1 MPa. The pressure chamber has a sapphire glass (diame-
ter 40 mm, thickness 6.5 mm) as an optical viewport.

The textures are observed with an optical microscope
(Olympus BX50) in transmission mode. For the analysis of
the director configuration, crossed polarizers are em-
ployed, whereas for the analysis of the dynamics of the
bubble size, the polarizers are omitted for a better resolu-
tion of the particle size.

Because of their buoyancy, the injected air bubbles
gradually rise to the top of the sandwich cell. Since the
alignment of the nematic director is planar at the glass
substrates, and at the bubble surface the anchoring is
homeotropic, the air bubbles never directly touch the glass
substrates.

Figure 3 shows densely packed air bubbles in the ne-
matic matrix. Inside the pressure chamber, the size of the
gas bubbles is continuously decreased by applying high
pressure to the sample. Figure 4 shows the change of the
bubble size by increasing the pressure. In general, by using
this pressure technique up to about 650 kPa, a change in
bubble size by a factor of 2 can be accomplished. When
furthermore utilizing the dissolution of the gas into the
liquid crystal, even smaller bubbles can be obtained until
the bubbles can be forced to completely disappear.

The dynamics of the growing and shrinking of the
bubbles by pressure-induced compression as well as by
the absorption of air into the liquid crystal has been inves-
tigated in more detail, and the radius of an air bubble has
been measured under different pressure conditions.
Figure 5 shows the change of the bubble radius on applying
and releasing pressure. When the pressure is applied, a
sudden decrease in the bubble size can be observed due to
the compression of the air in the bubbles. On a longer time
scale, a further decrease in bubble size is observed, which
is due to the absorption of the gas into the liquid crystal. In
the same way, after releasing the pressure, first a sudden
increase in bubble size occurs and then on a longer time
scale follows a slow increase of bubble diameter, which is
due to the transport of air from the liquid crystal into the
bubble. Therefore, the shrinking process of the bubble can
be divided into two regions; see Fig. 6: Region I corre-
sponds to the first rapid decrease in the bubble size due to
the compression of the air. The second region corresponds
to the slower shrinking of the bubble due to the absorption
of air into the liquid crystal. For region I, the compression
of the air bubble should satisfy PsR3

s=R
3 � 2�=R� Pout,

where Ps is an arbitrarily chosen standard pressure, Rs is

 

FIG. 3 (color online). Air bubbles in the liquid crystal matrix.
The width of the image is 1.75 mm.

 

FIG. 4 (color online). Control of bubble size using the pressure
technique. Gas bubbles at (a) 100 and (b) 640 kPa. The width of
the images is 1.57 mm.

 

FIG. 5 (color online). Change of bubble radius (bottom graph)
by applying and releasing high pressure (change between 100
and 500 kPa, top graph).

 

FIG. 2 (color online). Experimental setup: Gas bubbles are
injected through a capillary into the liquid crystal which is
contained in a rotating sandwich cell.
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the bubble radius at this standard pressure, R is the radius,
and Pout is the outside pressure, which follows by combin-
ing the Young-Laplace equation and the equation of state
of the ideal gas. With the use of a typical surface tension
value of � � 30 mN=m [21] and a pressure change be-
tween 100 and 500 kPa, the compression of the air gives a
shrinking of the bubble radius from 35 to 20:45 �m. This
estimate is in good agreement with the experimentally
observed compression in region I in Fig. 6.

For region II, the absorption of the air into the liquid
crystal yields the growth or shrinking rate of the bubble at a
constant external pressure Pout as

 

dR
dt
� ��

2�� R�Pout � Pa�
4�� 3PoutR

; (1)

where � is the coefficient of gas absorption-desorption rate
for unit area and unit pressure, and Pa is the saturated gas
pressure in equilibrium with the gas-liquid crystal mixture
across a plane interface. Equation (1) is reached by com-
bining the Young-Laplace equation and the kinetic expres-
sion of Henry’s law dN=dt � �4�R2k0�Pin � Pa�, where
N � �4�=3kBT�R

3Pin is the total number of molecules in
the bubble as derived from the equation of state, and k0 �
3kBTk is a rate constant.

When the internal pressure of a bubble is equal to Pa,
while satisfying the mechanical equilibrium with the ex-
ternal pressure Pout, the bubble should be in mechano-
chemical equilibrium with the gas-liquid crystal mixture,
corresponding to dR=dt � 0 or, equivalently, R �
2�=�Pa � Pout� in Eq. (1). One should note that this is an
unstable equilibrium: Bubbles smaller than this R further
shrink and those bigger than R should further grow.
Equation (1) involves only one characteristic length scale

Rc � �=Pout. For a typical surface tension value of � �
30 mN=m and Pout � 300 kPa, we obtain Rc � 0:1 �m.
When the bubble radius R is sufficiently large so that R�
Rc, the shrink/growth rate of the bubble becomes constant
at ���1� Pa=Pout�=3, as long as jPa=Pout � 1j is not too
small compared to unity. Since the bubbles we examined
here are larger than 1 �m, we expect this linear growth and
shrink behavior to hold. The results shown in Figs. 5–7
indicate that this is really the case. From the two slopes
dR=dt in Fig. 5 for shrink (500 kPa) and growth (100 kPa)
processes, we find Pa � 230:1 kPa and � � 0:88 �m=s.

In a separate run of experiment (data not shown), the
absorption rates are obtained for two different applied
pressures on two fresh samples (no prior absorption of
air). From these data, � and the saturation pressure Pa
are independently obtained as � � 0:84 �m=s and Pa �
300 kPa. Although the linear growth and shrink behaviors
are well followed in all of the experiments we conducted so
far, the absolute value of the rate exhibited a significant
variation up to 100% even in the same specimen, depend-
ing on the point in the cell. This is probably due to the
inhomogeneous degree of saturation, leading to the non-
uniform distribution of Pa.

Using the high-pressure technique to control the bubble
size, we are able to test the theoretical prediction of the
particle-size-induced configurational transition. We made
a polarizing microscopic observation of shrinking bubbles
with the background alignment direction parallel to the

 

FIG. 6 (color online). Two distinct regions of the shrinking of
the air bubble: Compression of the bubble by high pressure
(region I) and shrinking of the bubble due to the absorption of
the air into the liquid crystal (region II). The external pressure
made a jump from 100 to 500 kPa in region I and was kept
constant throughout region II.

 

FIG. 7 (color online). (a)–(e) Inducing a transition from a
dipolar hyperbolic hedgehog configuration [(a)–(d)] to a quad-
rupolar Saturn-ring configuration [(e)] by decreasing the radius
of the gas inclusion. 500 kPa (initial pressure 100 kPa) is applied
in order to induce the shrinking of the bubble size. (f) Bubble
radius as a function of time.
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optic axis of crossed polarizers to have the best visibility of
the distorted cloud around a bubble (Fig. 7).

Choosing a single, well-isolated bubble with a dipolar
configuration, we monitored the configuration variation as
the bubble size was decreased under a high pressure. As
shown in Figs. 7(a)–7(e), at an apparent radius close to
5 �m on shrinking, an abrupt change of view takes place
from the asymmetric dipolar state to a symmetric profile
featured with a dark cross. Although we do not have direct
evidence for the Saturn ring itself, the symmetrical profile
is a clear reminiscence of the quadrupolar structure.
Figure 7(f) shows the bubble radius as a function of
time, when the pressure is increased from 100 to 500 kPa
for the transition shown in Figs. 7(a)–7(e).

The apparent bubble radius at which the transition oc-
curs, according to Fig. 7, is about 5 �m. This value is
likely to be an overestimate due to the limited resolution of
the polarizing microscopy. If we interpolate between the
vanishing point of t � 47 s and the initial region before
t � 20 s on the basis of the theoretical linear relation, we
obtain the lower bound for the bubble radius at the con-
figuration transition to be 1 �m [see Fig. 7(f)]. The real
bubble size should lie between these two boundaries. Since
there are a number of sources of uncertainties such as the
surface tension variation as a result of surface active con-
taminants and the insufficient optical resolution, the rather
big range of possible bubble size may be tolerable.

The relative energetic stability of the Saturn-ring and
hyperbolic hedgehog configurations has been investigated
by a numerical scheme based on the Landau–de Gennes
formalism [22]. The total free energy of the system is
basically proportional to the radius R of the colloidal
particle for both the Saturn-ring and hedgehog configura-
tions. For the Saturn-ring case, however, the �1=2 discli-
nation line surrounding the particle makes a non-negligible
contribution in the form of R lnR=�, with � being the
coherence length of the nematic orientational order. This
logarithmic contribution is indeed responsible for the hy-
perbolic hedgehog–Saturn-ring transition. The numerical
study in Ref. [22] has shown that the equilibrium transition
point is approximately located at 160�: By employing � �
10 nm as a typical value, we obtain 1:6 �m for the tran-
sition radius. In view of possible hysteresis, the real tran-
sition should take place at a radius smaller than this value.
As is usual for such a continuum theoretic estimate, the
present level of agreement between the experimental result
and the theory seems satisfactory.

To conclude, we developed a high-pressure technique
that allows the simultaneous observation of the director
configuration around a single bubble, while its size is

continuously changed. When the size of the bubble is
decreased by the applied pressure, a transition from a
hyperbolic hedgehog configuration (dipole) to a Saturn-
ring configuration (quadrupole) occurs, as has been pre-
dicted theoretically.
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