
Friedel Oscillations, Impurity Scattering, and Temperature Dependence
of Resistivity in Graphene

Vadim V. Cheianov and Vladimir I. Fal’ko
Physics Department, Lancaster University, Lancaster, LA1 4YB, United Kingdom

(Received 10 August 2006; published 28 November 2006)

We show that Friedel oscillations (FO) in grapehene are strongly affected by the chirality of electrons in
this material. In particular, the FO of the charge density around an impurity show a faster (��� r�3)
decay than in conventional 2D electron systems and do not contribute to a linear temperature-dependent
correction to the resistivity. In contrast, the FO of the exchange field which surrounds atomically sharp
defects breaking the hexagonal symmetry of the honeycomb lattice lead to a negative linear T dependence
of the resistivity.
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Screening strongly influences properties of impurities in
metals and semiconductors. While Thomas-Fermi screen-
ing suppresses the long-range tail of a charged impurity
potential, Friedel oscillations (FO) of the electron density
around a defect [1] are felt by scattered electrons at a
distance much longer than the Thomas-Fermi screening
length. Friedel oscillations originate from the singular
behavior of the response function of the Fermi liquid at
wave vector 2kF. At zero temperature, the decay of the
amplitude �� of these oscillations with distance r from the
impurity obeys a power law dependence. In a nonrelativ-
istic degenerate two-dimensional (2D) Fermi gas [2], �� /
cos�2kFr� ��=r

2. In 2D electron systems, Bragg scatter-
ing off the potential created by these long-range FO
strongly renormalizes the momentum relaxation rate ��1

for quasiparticles near the Fermi level � � �F, which leads
to a linear temperature dependence of the resistivity [3–6]
in a ‘‘ballistic’’ temperature range �F > T > h=� con-
firmed in recent experiments on semiconductor hetero-
structures and Si field-effect transistors [7].

The graphene-based transistor [8,9] is a recent invention
which attracts a lot of attention. Improvement of the per-
formance of this device requires identification of the domi-
nant source of electron scattering limiting its mobility.
Those can be structural defects of graphene lattice (vacan-
cies and dislocations), substitutional disorder, chemical
deposits on graphene, and, importantly, charges trapped
in or on the surface of the underlying substrate.

In this Letter, we investigate the effects of screening of
scatterers in graphene and show how the phenomenon of
FO can be used to gain insight into the microscopic nature
of disorder. Graphene (a monolayer of graphite) is a gap-
less 2D semiconductor with a Dirac-like dispersion of
carriers [10]. In this material, it is the Thomas-Fermi
screening which is responsible [11] for the experimentally
observed linear dependence of graphene conductivity on
the carrier density [8,9]. Moreover, quasiparticles in gra-
phene possess chiral properties related to the sublattice
composition of the electron wave on a 2D honeycomb
lattice [10]. Below, we show that, due to the latter pecu-
liarity of graphene, FO of the electron density decay as

��� r�3 at a long distance from an impurity [faster than
in a usual 2D metal], and the linear temperature-dependent
correction to the resistivity

 R�T� � R�0� � �
h

e2

T@

�2
F��

(1)

is caused only by the FO of the exchange field and is
strongly sensitive to the microscopic origin of scatters. In
Eq. (1), ��1

� is the backscattering rate specifically from
atomically sharp defects distorting the hexagonal symme-
try of the honeycomb lattice: structural defects, chemical
deposits, and substitutional disorder. Note that Coulomb
scatterers do not contribute towards this result. Thus, we
predict that, in graphene-based devices where scattering is
dominated by charges trapped in the substrate (or on its
surface), the temperature-dependent resitivity 	R�T� �
R�0�
=R� �T=�F���=��� is much weaker than in conven-
tional 2D semiconductor structures. We propose to use the
measurement of the resistivity in a temperature range �F >
T > h=� as a probe of the composition of disorder.

Electrons in graphene can be described using
4-component Bloch functions [�K�;A, �K�;B, �K�;B,
�K�;A], which characterize the electronic amplitudes on
the two sublattices (A and B) and valleys K� and K�.
Since for the ballistic temperature regime T�=h > 1 inter-
ference between waves scattered from FO around different
impurities can be neglected, we study screening of an
individual impurity. The single-particle Hamiltonian in
the presence of one impurity is

 Ĥ sp � �i@v� � r� û��r�: (2)

In this expression, � � ��x;�y� is a two-dimensional
vector whose components are 4� 4 matrices �x � �z 
�x and �y � �z  �y. Together with �z � �0  �z, they
form [12] the generator algebra of the unitary group SU�

2 .
Here �x;y;z and �x;y;z are sets of three Pauli matrices acting
on the valley and sublattice indices, respectively, and �0

(�0) are 2� 2 unit matrices acting on the valley (sublat-
tice) spaces. Another set of three matrices, �x � �x  �z,
�y � �y  �z, and �z � �z  �0, such that
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	�l1 ;�l2
 � 2i"l1l2l�l, satisfies 	�s;�l
 � 0. Therefore,
they commute with the first term in Ĥsp and generate the

unitary group SU�
2 � fe

ib ~n� ~�g describing the valley sym-
metry of the Dirac Hamiltonian in graphene.

For a nonmagnetic defect, the matrix û in Eq. (2) should
be Hermitian and time-reversal symmetric. It can be pa-
rametrized using 10 independent real parameters [12,13].
One can check [12,14] that all of the operators �s and �l
change sign under the time-reversal transformation, so that
the 9 products �s�l are t! �t invariant and together with
the unit matrix Î � �0  �0 can be used as a basis to
represent a nonmagnetic static disorder:
 

û � uÎ �
X

s;l�x;y;z

usl�s�l � uÎ � Xz�z �X ��;

Xs �
X

l�x;y;z

usl�l: (3)

The term uÎ in Eq. (3) represents an electrostatic potential
averaged over the unit cell. We attribute this term to
charged impurities with a sheet density nc. Various atomi-
cally sharp defects [15] with the 2D density ndef can be
parametrized using nine independent real parameters usl
and time-inversion-symmetric [14] matrices �s�l. In par-
ticular, uzz describes different on-site energies on the A and
B sublattices. Terms with uxz and uyz take into account
fluctuations of A ! B hopping, whereas usx and usy (s �
x; y; z) generate intervalley scattering (whose presence has
been revealed [12] by the observation of weak localization
in graphene [16]).

The momentum relaxation of chiral electrons in gra-
phene due to scattering off Coulomb impurities is deter-
mined by the anisotropic differential cross section

 w��� � u2
kF sin��=2�cos2��=2�:

The factor cos2��=2�, where � is the scattering angle,
reflects the absence of backscattering of graphene electrons
off the electrostatic potential [17,18]. In the RPA, the
Fourier transform uq of the electrostatic potential of a
single charged impurity screened by 2D electrons is uq �
2��e2=	�=�q� 
�, where 
 � 8��e2=	 � 4kFrs; � �
kF=�2�@v� is the density of states per spin and valley, 	
is the dielectric constant, and rs � e2=	@v (for a graphene
sheet on a Si substrate, rs � 1).

In a structure with sheet density nc of charged impuri-
ties, the resistivity R � 	2e2�v2�
�1 is determined by the
momentum relaxation rate ��1 � nc��@�1h�1�
cos��w���i�, and it is inverse proportional to the carrier
density ne [11]:

 R �
h

4e2

nc
ne

4���rs�r2
s

�1� 4rs�2
; (4)

where ��rs� is a monotonous function such that ��0� � 1,
��1� � 0:3, and ��1� � 1

4 . It has been established that a
contribution from atomically sharp disorder towards R

depends on the Fermi energy only logarithmically [13].
Therefore, the empirical relation neR � const established
in the experimentally studied graphene structures with high
carrier densities [8,9] indicates that charges located in the
underlying substrate or on its surfaces are the main source
of scattering. In Eq. (3), it is represented by uÎ.

Analysis of Friedel oscillations.—Below, we analyze
the FO of the density matrix of 2D electrons in graphene
surrounding various types of scatterers, Eq. (3). The plane
wave eigenstates of the Dirac Hamiltonian �i@v� � r are
 k;�r� � eikrjki. Here the spinor jki has a definite
valley projection, �zjki � jki,  � �1, and chirality:
the projection � � n � �1 of the operator � on the direc-
tion of motion n � k=k. Below, we describe a chiral
electron with � � n � 1 using the polarization matrix

 ŝ n �
X
��1

jkihkj �
1

2
�1�� � n�; ŝ2

n � ŝn: (5)

Because of scattering off the impurity, the plane wave
eigenstates of the Hamiltonian acquire a correction � k;,
which in the Born approximation is given by

 � k;�r� �
Z d2p

�2��2
eipr

E�k� � @v� � p� i0
ûjki: (6)

Here E�k� � �@vk, where the sign� (� ) corresponds to
the conduction (valence) band states. For graphene with the
Fermi energy �F positioned in the conduction band, and for
T < �F, we shall disregard the valence band contribution.
Then the correction to the electron density matrix induced
by the impurity is

 ��̂�r; r0� �
Z d2k

�2��2
nF�k�� k;�r�   

y
k;�r

0� � H:c: (7)

The matrix ��̂�r; r0� contains a slowly decaying oscil-
latory part, which is due to a jump in the Fermi function
nF�k�. After substituting Eq. (6) into Eq. (7) for the density
matrix, we find that, in the region 1< kFr < �F=T, the
oscillating part of the ‘‘local’’ density matrix �̂�r; r� calcu-
lated to leading order in 1=r is given by
 

��̂�r; r� �
kF

8�2v

e2ikFr

2ir2 ŝnûŝ�n � H:c:;

ŝnûŝ�n �
1
2�X̂z � in� X̂���̂z � in� �̂�;

(8)

where n � r=r and a� b � axby � aybx. The matrix
structure of ��̂ describes the distribution of charge at the
atomic length scale: oscillations with the wave vector K �
K� �K� (related to �x;y) superimposed with the oscil-
lations between the A and B sublattices (related to, e.g.,
�z).

The FO in the density matrix (8) do not lead [19] to
oscillations in the charge density �ne�r� � Tr��̂�r; r� be-
cause for any pair of matrices �s and �l, Tr�s�l � 0. To
find �ne, we evaluated ��̂ up to order r�3 in the 1=�kFr�
expansion and arrived at the leading nonvanishing contri-
bution to the FO of the electron density coming from the
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diagonal disorder uÎ

 

�ne�r�
ne

�
une
�F

cos�2kFr�

�2kFr�
3 ; kFr� 1; (9)

where for a screened impurity charge �une=�F� �
2rs=�1� 4rs� � 1. The FO in Eq. (9) decay with the
distance from the Coulomb impurity faster than in a con-
ventional 2D electron gas (where FO obey the 1=r2 law).
This is due to the absence of backscattering of a chiral
electron off the potential uÎ conserving the sublattice state
[17]. As a result, Bragg scattering off FO formed around
the Coulomb impurity is suppressed and does not lead to a
linear T dependence of the resistivity.

Interaction correction to resistivity.—Since atomically
sharp defects do not generate FO in the electron density,
they also do not induce an oscillating Hartree potential,
though they generate a nonlocal exchange field. Below, we
investigate using the Born approximation how the ex-
change field created by the FO in Eq. (7) renormalizes
impurity scattering and leads to a linear T dependence of
the resistivity. We write down the Hartree-Fock potential
created by the impurity as a sum HH �HF:
 

HH � 2
Z
drdr0V�r� r0�Tr��r0; r0� y�r� �r�;

HF � �
Z
drdr0V�r� r0� y�r���r; r0� �r0�;

where V�r� is the (screened) Coulomb potential averaged
over the unit cell. Here we suppressed the electron spin
indices, for brevity. The factor of 2 in HH is the result of
summation over spin channels.

The leading correction �w�p; �� to the differential cross
section w��� of scattering off a defect is a result of the
interference [3] between the wave scattered by the defect
itself and the wave Bragg-reflected by the Hartree
[Fig. 1(a)] and the Fock [Fig. 1(b)] potentials of the FO.
The resulting correction to the momentum relaxation rate
is

 ���1 � �ndefv
Z
dpn0F�p�

Z d�
2�
�1� cos���w�p; ��:

After substituting the Born amplitude A��� of the scattering
process of the defect itself and the amplitudes �Aa�b���� of
the two processes in Figs. 1(a) and 1(b) into the differential

cross section w��� � jA� �Aa � �Abj
2, one finds that

�w��� � 2Re	A���Aa � �Ab�
, which yields
 

���1 �
ndef

2�4v2 Re
Z
dpdp0dkdk0�E�M

1� n � n0

k2 � �k0�2 � i0

� 	 ~V�jk� pj�k�k;k0

p;p0

� 2 ~V�jp0 � pj�k~�k;k0

p;p0 
nF�k�n
0
F�p�; (10)

where
 

k�k;k0

p;p0 �
1
2 Tr	ŝnûŝn0 �k�� � k0�ûŝm
;

k~�k;k0

p;p0 �
1
2 Tr	ŝnûŝn0 
Tr	�k�� � k0�ûŝm
:

In Eq. (10), the integration is constrained by the mo-
mentum and energy conservation imposed by �M �
�2�p� p0 � k0 � k� and �E � ��p� p0�, and we use
the notations n � p=p, n0 � p0=p, m � k=k. Two form
factors of Bragg scattering � and ~� represent the Fock and
the Hatree contributions, respectively. Assuming x-y iso-
tropy of disorder, we average the relaxation rate ��1 over
the directions of the initial wave vector p.

The Bragg scattering correction to the momentum re-
laxation rate (10) can be separated into zero-temperature
and temperature-dependent parts ���1 � ���1

0 � ��
�1
T .

The linear temperature dependence of ���1
T [3] is due to

a singularity at k � k0 in the integral (10). To evaluate its
contribution, we extend the analysis presented in Ref. [3].
First, we use �M and �E to rewrite the denominator in the
integral (10) as k2 � �k0�2 � 2�k� p��p� p0� �
2kp�cos�� cos�0� � 2p2	1� cos��� �0�
, where � �
��k;p� and �0 � ��k;p0�. The integrand is singular at
those points where the denominator vanishes, except for
� � �0, where the singularity is cancelled by the factor
	1� cos��� �0�
. For given k and p, the locus of singular
points is a contour in the plane ��; �0�, which we show in
Fig. 2 for various ratios k=p. As k changes from k < p to
k > p, two parts of this contour coalesce, creating a double
pole at the point ��; �0� � �0; ��. We rewrite Eq. (10) as

 ���1
T �

ndef

4�4v2

Z
dpdknF�k�n

0
F�p�g�k; p� � ��

�1
0 ;

 

FIG. 1. The figure is a schematic representation of the pro-
cesses renormalizing the scattering amplitude in (a) the Hartree
and (b) the Fock channels.

 

FIG. 2 (color online). The structure of singularities in the
integration. The contours show the position of the singularities
of the integrand in the �; �0 plane. The arrows indicate the
direction of increasing k=p.
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where the function g�k; p� is the result of the integration of
Eq. (10) over p0 and k0 and the angular components of p
and k. The leading term in ���1

T is linear in temperature
because of the jump g�p� 0; p� � g�p� 0; p� � �g�p�
of the function g at k � p resulting from the double pole at
��; �0� � �0; �� for k � p:
 

���1
T � �

ndef

4�4v2

�g�kF�
v

T � �T
2ndefkF
�@4v3 �0

~V�0�;

�0 �
Z dn

2�
Tr	ûŝnûŝ�n
 �

X
s;l�x;y;z

u2
sl�1� �sz�:

(11)

When deriving �g�kF� in Eq. (11), we took into account
that the contribution to the jump of g comes from back-
scattering, ��; �0� � �0; ��, so that we substituted p � k
and p0 � �p in all smooth angle-dependent functions.
This produced the exchange term form factor �0 �

h�p;�p
p;�pip averaged over the incidence angle and also re-

sulted in the vanishing of the Hartree term due to the
absence of backscattering of chiral electrons off the
Coulomb potential ~�p;�p

p;�p � 0.
Finally, we arrive at the following expression for the

dominant temperature-dependent part of the resistivity:

 R�T��R�0� ��
h

e2

4T ~V�0�

hv2�F��
; ��1

� �
��ndef

@
�0: (12)

It is interesting to compare the latter result with that
derived [3] for electrons in a simple-band 2D semiconduc-
tor or metal. In the latter case, R�T� is formed by the
competition of the Hartree and Fock contributions which
have different signs, which may lead to the change of the
size and even the sign of the effect upon variation of the
electron density or spin polarization of the 2D gas by an
external magnetic field. In graphene, the T-dependent cor-
rection to the resistivity is only due to the exchange inter-
action, so that it is negative and its density dependence
tracks the density dependence of the interaction constant
~V�0�. For a 2D-screened Coulomb interaction ~V�q� �
2��e2=	�=�q� 
�, we estimate ~V�0� � 1

4�
�1, which leads

to the result in Eq. (1). The other difference between
graphene and usual semiconductor structures is that in
the former the linear in T correction is caused only by
atomically sharp disorder (e.g., structural defects in gra-
phene, chemical deposits, substitutional disorder, and con-
tact with an incommensurate lattice of a substrate),
whereas in the latter it is formed by all scatterers. This
means that the temperature dependence of resistivity
should be weak (or even absent) in a suspended graphene
sheet or a sheet loosely attached to the substrate and that it
can be pronounced in devices where graphene is strongly
coupled to the substrate.

In conclusion, we described the Friedel oscillations
induced by scatterers in graphene and their effect on the
resistivity. The general form of FO is given in Eq. (8). One
of the immediate implications of this result is a r�2 depen-
dence of the RKKY interaction between two magnetic

impurities in graphene. This is because a substitution
atom with spin S will generally create a perturbation �S �
se�û for the electron spin se with û containing all
symmetry-breaking terms in Eq. (3). We also showed
that, due to the chirality of graphene electrons, the linear
temperature correction to the resistivity [Eqs. (1) and (12)]
is caused by atomically sharp defects rather than by
Coulomb charges in the insulating substrate, so that its
measurement can be used as a tool to test the microscopic
composition of disorder.
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