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We present an on-shell scheme to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is
based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-
mass and gauge-dependent wave function renormalization contributions, and to implement the on-shell
renormalization of the former with nondiagonal mass counterterm matrices. Diagonalization of the
complete mass matrix leads to an explicit CKM counterterm matrix, which automatically satisfies all
the following important properties: it is gauge independent, preserves unitarity, and leads to renormalized
amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.
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The Cabibbo-Kobayashi-Maskawa (CKM) [1] flavor
mixing matrix, which rules the charged-current interac-
tions of the quark mass eigenstates and describes how the
heavier ones decay to the lighter ones, is one of the
fundamental cornerstones of the standard model of ele-
mentary particle physics and, in particular, it is the key to
our understanding why the weak interactions are not in-
variant under simultaneous charge-conjugation and parity
transformations. In fact, the detailed determination of this
matrix is one of the major aims of recent experiments
carried out at the B factories [2], as well as the objective
of a wide range of theoretical studies [2,3]. An impor-
tant theoretical problem associated with the CKM matrix
is its renormalization. An early discussion, in the two-
generation framework, was given in Ref. [4], focusing
mostly on the cancellation of ultraviolet divergences.
More recently, there have been a number of interesting
papers that address the renormalization of both the diver-
gent and finite contributions at various levels of generality
and complexity [5].

In this Letter we propose an explicit on-shell framework
to renormalize the CKM matrix at the one-loop level, based
on a novel procedure to separate the external-leg mix-
ing corrections into gauge-independent ‘‘self-mass’’ (SM)
and gauge-dependent ‘‘wave function renormalization’’
(WFR) contributions, and to implement the on-shell renor-
malization of the former with nondiagonal mass counter-
term matrices. This procedure may be regarded as a simple
generalization of Feynman’s approach in quantum electro-
dynamics (QED) [6]. We recall that, in QED, the self-
energy contribution to an outgoing fermion is given by

 �Mleg � �u�p���6p�
1

6p�m
; (1)

 ��6p� � A� B�6p�m� � �fin�6p�; (2)

where ��6p� is the self-energy, A and B are divergent
constants, and �fin�6p� is a finite part which is proportional
to �6p�m�2 in the vicinity of 6p � m and, therefore, van-
ishes when inserted in Eq. (1). The contribution of A to

Eq. (1) exhibits a pole at 6p � m and is gauge independent,
while that ofB is regular at this point, but gauge dependent.
They are referred to as SM and WFR contributions, re-
spectively. A is canceled by the mass counterterm. On the
other hand, since the factor �6p�m� cancels the propaga-
tor’s singularity, in Feynman’s approach B is combined
with the proper vertex diagrams leading to a gauge-
independent result.

In the case of the CKM matrix, one encounters not only
diagonal terms as in Eq. (1), but also off-diagonal external-
leg contributions generated by the Feynman diagrams of
Fig. 1(a). As a consequence, the self-energy corrections to
an external leg are of the form

 �Mleg
ii0 � �ui�p��ii0 �6p�

1

6p�mi0
; (3)

where i denotes the external quark of momentum p and
mass mi, and i0 the virtual quark of mass mi0 .

We evaluate the contributions of Fig. 1 in R� gauge,
treating the i and i0 quarks on an equal footing. (A detailed
account of our analytical work will be presented in a later,
longer manuscript [7].) For example, we write

 2 6pa� � 6pa� � a�6p

� �6p�mi�a� � a��6p�mi0 � �mia� �mi0a�;

(4)

 

FIG. 1. Fermion mixing self-energy diagrams. H and ��

denote Higgs and charged Goldstone bosons, respectively.
Diagram (b) is included to cancel the gauge dependence in the
diagonal contribution of diagrams (a).
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where a� � �1� �5�=2 are the chiral projectors. Using
this approach, we find that the contributions of Fig. 1 can
be classified in four classes: (i) terms with a left factor �6p�
mi�; (ii) terms with a right factor �6p�mi0 �; (iii) terms with
a left factor �6p�mi� and a right factor �6p�mi0 �; and
(iv) constant terms not involving 6p. When inserted in
Eq. (3), the terms of class (iii) obviously vanish, in analogy
with �fin�6p� in Eqs. (1) and (2). The terms of classes (i) and
(ii) contain gauge-dependent parts but, when inserted in
Eq. (3), they combine to cancel the propagator �6p�mi0 �

�1

in both the diagonal (i � i0) and off-diagonal (i � i0) con-
tributions. Thus, they lead to expressions suitable for com-
bination with the proper vertex diagrams. In analogy with
B in Eqs. (1) and (2), such expressions are identified as
WFR contributions. They satisfy the following important
property: all the gauge-dependent and all the divergent
WFR contributions to the basic W ! qi � �qj amplitude
are independent of i0. Using the unitarity relation
VilV

y
li0Vi0j � Vil�lj (since the cofactor of this expression

depends on ml, the summation over l is performed later),
one then finds that the gauge-dependent and the divergent
WFR contributions to the W ! qi � �qj amplitude are
independent of CKM matrix elements, except for an over-
all factor Vij, and depend only on the external-quark
masses mi and mj. Since the one-loop proper vertex dia-
grams also only depend on mi, mj, and an overall factor
Vij, this observation implies that the proof of gauge inde-
pendence and finiteness of the remaining one-loop correc-

tions to the W ! qi � �qj amplitude is the same as in the
unmixed, single-generation case.

In contrast to the contributions of classes (i) and (ii) to
Eq. (3), those of class (iv) lead to a multiple of �6p�mi0 �

�1

with a cofactor that involves a�, but is independent of 6p.
Thus, they are unsuitable to be combined with the proper
vertex diagrams and are expected to be separately gauge
independent, as we indeed find. In analogy with A in
Eqs. (1) and (2), they are identified with SM contributions.
Specifically, in the case of an outgoing up-type quark, the
SM contributions from Fig. 1 are given by the gauge-
independent expression

 

�Msm
ii0 �

g2

32�2 VilV
y
li0 �ui�p�

�
mi

�
1�

m2
i

2m2
W

�
�

�

�
mia� �mi0a� �

mimi0

2m2
W

�mia� �mi0a��
�

� �I�m2
i ; ml� � J�m2

i ; ml�	

�
m2
l

2m2
W

�mia� �mi0a��

� �3�� I�m2
i ; ml� � J�m2

i ; ml�	

�
1

6p�mi0
; (5)

where g is the SU(2) gauge coupling, � � 1=�n� 4� �
��E � ln�4��	=2� ln�mW=��, n is the space-time dimen-
sion, � is the ’t Hooft mass, �E is Euler’s constant,

 fI�p2; ml�; J�p
2; ml�g �

Z 1

0
dxf1; xg ln

m2
l x�m

2
W�1� x� � p

2x�1� x� � i"

m2
W

; (6)

and ml are the masses of the virtual down-type quarks in Fig. 1(a). Terms independent of ml within the curly brackets of
Eq. (5) lead to diagonal contributions on account of VilV

y
li0 � �ii0 . There are other SM contributions involving virtual Z0,

�0, �, and H bosons, as well as additional tadpole diagrams, but these are again diagonal expressions of the usual kind.
In order to generate mass counterterms, we proceed as follows. In the weak-eigenstate basis, the bare mass terms are of

the form � � 0QR m
0Q
0  

0Q
L � H:c:, where  0QL and  0QR are left- and right-handed column spinors involving the three up-type

(Q � U) and down-type (Q � D) quarks, and m0Q0 are nondiagonal matrices. Writing m0Q0 � m0Q � �m0Q, where m0Q and
�m0Q are the renormalized and counterterm mass matrices, we consider a biunitary transformation of the quark fields that
diagonalizes m0Q leading to diagonal and real renormalized mass matrices mQ and to new nondiagonal mass counterterm
matrices �mQ. In the new framework, the mass term is given by

 � � �m� �m���a� � �m
���a�� � � � R�m� �m

���� L � � L�m� �m
���� R; (7)

where m is real, diagonal, and positive, and �m��� and
�m��� are arbitrary nondiagonal matrices subject to the
Hermiticity constraint

 �m��� � �m���y: (8)

Here we have not exhibited the superscript Q, but it is
understood that m and �m��� stand for two different sets of
matrices involving the up- and down-type quarks. As usual,
the mass counterterms are included in the interaction
Lagrangian. Their contribution to the external-leg correc-
tions is given by� �ui�p���m

���
ii0 a� � �m

���
ii0 a��=�6p�mi0 �.

Next we adjust �m���ii0 to cancel, as much as possible, the
SM contributions given in Eq. (5). The cancellation of the

divergent parts is achieved by choosing

 ��m���div �ii0 �
g2mi

64�2m2
W

���ii0m
2
i � 3VilV

y
li0m

2
l �;

��m���div �ii0 �
g2mi0

64�2m2
W

���ii0m
2
i � 3VilV

y
li0m

2
l �;

(9)

which satisfies the Hermiticity constraint of Eq. (8).
Because the functions I�p2; ml� and J�p2; ml� are evaluated
at p2 � m2

i in the ii0 channel (where i and i0 are the
external and virtual quarks, respectively) and at p2 � m2

i0

in the i0i channel (where i0 and i are the external and virtual
quarks, respectively), it is easy to see that it is not possible

PRL 97, 221801 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 DECEMBER 2006

221801-2



to cancel all the finite pieces of Eq. (5) in all channels
without contradicting Eq. (8). In particular, we note that
once the �m���ii0 are chosen, the �m���i0i are fixed by Eq. (8).
For this reason, we employ the following renormalization
prescription: the mass counterterms are chosen to exactly
cancel all the contributions to Eq. (5) in the i0 � i, uc, ut,
and ct channels, and all the SM contributions in the j0 � j,
sd, bd, and bs channels in the corresponding down-type-
quark expression. (Here j and j0 are the incoming and
virtual down-type quarks, respectively.) This implies that,
after mass renormalization, there are residual SM contri-
butions in the cu, tu, tc, ds, db, and sb channels. However,
these residual contributions are finite, gauge independent,
and numerically very small. In fact, the fractional correc-
tions they induce in the real parts of Vij reach a maximum
value of O�4� 10�6� for Vts, and they are much smaller in
the case of several other CKM matrix elements. Since they
are regular in the limits mi0 ! mi or mj0 ! mj, they may
be regarded as additional finite and gauge-independent
contributions to wave function renormalization that happen
to be very small.

We emphasize that with this renormalization prescrip-
tion the SM corrections are fully canceled in all channels in
which the external particle is a u, �u, d, or �d quark. This is of
particular interest since Vud, the parameter associated with
W ! u� �d, is by far the most precisely determined CKM
matrix element [3].

It is also interesting to note that, since Eq. (9) satisfies
Eq. (8), the modified minimal-subtraction (MS) renormal-
ization, in which only the 1=�n� 4� � ��E � ln�4��	=2
terms are subtracted, can be implemented in all nondiag-
onal channels. More generally, one can consider a renor-
malization prescription that satisfies the Hermiticity
condition in all channels by choosing the mass counter-
terms to cancel the off-diagonal terms in Eq. (5) and the
corresponding down-type-quark expression with the func-
tions I�p2; ml� and J�p2; ml� evaluated at the same fixed p2

value for all flavors. Since Eq. (5) is explicitly gauge
independent, in our formulation there is no restriction in
the choice of p2 other than that it should not generate
imaginary parts in the integrals I�p2; ml� and J�p2; ml�.
In particular, p2 can have any value p2 
 m2

W . Of course,
since it is desirable to cancel the SM contributions as much
as possible, it is convenient to choose 0 
 p2 � m2

W . It
should be pointed out, however, that the MS and fixed-p2

subtraction prescriptions of mass renormalization are not
on-shell schemes and lead to residual SM contributions in
all off-diagonal channels, which diverge in the limits
mi0 ! mi or mj0 ! mj.

An alternative formulation, equivalent to the one dis-
cussed so far, is obtained by diagonalizing the complete
mass matrix m� �m���a� � �m���a� in Eq. (7). This is
achieved by a biunitary transformation

  L � UL ̂L;  R � UR ̂R: (10)

At the one-loop level, it is sufficient to approximate

 UL � 1� ihL; UR � 1� ihR; (11)

where hL and hR are Hermitian matrices of O�g2�. The
diagonalization is implemented by choosing

 i�hL�ii0 �
mi�m

���
ii0 � �m

���
ii0 mi0

m2
i �m

2
i0

�i � i0�; (12)

while i�hR�ii0 is obtained by exchanging �m��� $ �m��� in
Eq. (12). Since the only effect of the diagonal terms of hL
and hR on the Wqi �qj interaction is to introduce phases that
can be absorbed in a redefinition of the quark fields, it is
convenient to set �hL�ii � �hR�ii � 0. This analysis is car-
ried out separately to diagonalize the mass matrices of the
up- and down-type quarks. Thus, we obtain two pairs of
matrices: hUL and hUR for the up-type quarks and hDL and hDR
for the down-type quarks. Next we consider the effect of
this biunitary transformation on the Wqi �qj interaction

 LWqi �qj � �
g0���

2
p  ULV�

� DLW� � H:c: (13)

We readily find that

 LWqi �qj � �
g0���

2
p  ̂

U
L �V � �V��� ̂

D
LW� � H:c:; (14)

where

 �V � i�hULV � Vh
D
L �: (15)

It is important to note that V � �V satisfies the unitarity
condition through O�g2�:

 �V � �V�y�V � �V� � 1�O�g4�: (16)

In the ( ̂L,  ̂R) basis, in which the complete quark mass
matrices are diagonal, �V and V0 � V � �V represent the
counterterm and bare CKM matrices, respectively. One
readily verifies that the term ihULV in �V leads to the
same off-diagonal contribution to the W ! qi � �qj ampli-
tude as �mU��� and �mU��� in our previous discussion in
the ( L,  R) basis. Similarly, the term �iVhDL leads to the
same contributions as �mD��� and �mD���. It is important
to emphasize that this formulation is consistent with the
unitarity and gauge independence of both the renormalized
and bare CKM matrices, V and V0, respectively.

For completeness, we exhibit the CKM counterterm
matrix in component form:

 �Vij � i��hUL �ii0Vi0j � Vij0 �h
D
L �j0j	

�
mU
i �m

U���
ii0 � �mU���

ii0 mU
i0

�mU
i �

2 � �mU
i0 �

2 Vi0j

� Vij0
mD
j0�m

D���
j0j � �mD���

j0j mD
j

�mD
j0 �

2 � �mD
j �

2 ; (17)

where it is understood that i0 � i in the first term on the
right-hand side and j0 � j in the second, and �mU���

ii0 and

�mD���
j0j are the off-diagonal mass counterterms determined

PRL 97, 221801 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 DECEMBER 2006

221801-3



by the on-shell renormalization prescriptions proposed in
our first formulation. The coefficient of 1=�n� 4� in
Eq. (17) is, of course, common to all renormalization
prescriptions for the CKM matrix [5] and also appears in
its renormalization group equation [8].

In summary, after introducing a novel procedure to
separate the external-leg mixing corrections into gauge-
independent SM and gauge-dependent WFR contributions,
in analogy with Feynman’s treatment in QED, we have
implemented their renormalization in two equivalent
frameworks. The first one is carried out in a basis in which
the renormalized quark matrices are diagonal and the non-
diagonal mass counterterm matrices are employed to can-
cel all the divergent SM contributions, and also their finite
parts up to Hermiticity constraints. In particular, the SM
corrections are fully canceled in the W ! u� �d ampli-
tude, associated with Vud, the most accurately measured
CKM parameter. Residual finite contributions in other
channels are very small. We have also pointed out that
the proof of gauge independence and finiteness of the
remaining one-loop corrections to the W ! qi � �qj am-
plitude reduces to that in the unmixed, single-generation
case. Alternative renormalization prescriptions that are
‘‘democratic,’’ in the sense that they do not single out par-
ticular off-diagonal channels, were briefly outlined. How-
ever, strictly speaking, they are not on-shell schemes and
lead to residual SM contributions in all off-diagonal chan-
nels, which diverge in the limits mi0 ! mi or mj0 ! mj.

The second formulation was obtained by diagonalizing
the complete mass matrices, namely, the renormalized plus
counterterm mass matrices derived in the first approach. In
the second framework a CKM counterterm matrix �V was
generated which again cancels the divergent and, to the
extent allowed by the Hermiticity constraints, also the
finite parts of the off-diagonal SM contributions. As usual,
the diagonal SM contributions are canceled by the mass
counterterms, which in this approach are also diagonal. An
important feature is that this formulation is consistent with
the unitarity and gauge independence of both the renor-
malized and bare CKM matrices, V and V0 � V � �V,
respectively.

As is well known, an enduring difficulty, thirty years old,
in a satisfactory treatment of the one-loop electroweak
corrections to all charged-current processes involving fer-
mions is due to the external off-diagonal self-energy ef-
fects depicted in Fig. 1(a). Since the mass renormalization
of the usual, diagonal effects must necessarily involve a
complete subtraction of the SM contributions to avoid the
propagator’s singularity [see Eq. (1)], it is natural to follow
the same strategy in the off-diagonal contributions. Thus,
an on-shell renormalization procedure to treat all these
effects is highly desirable and strongly motivated. Such
an objective has been achieved for the first time in this
Letter in a way that the following important properties are
manifestly satisfied: the CKM counterterm matrix is gauge

independent, preserves unitarity, and leads to renormalized
amplitudes that are nonsingular in the limit in which any
two fermions become mass degenerate. Because of the
close analogy with QED and the fact that our decomposi-
tion procedure is algebraic in nature, it is likely that this
approach can be naturally generalized to higher orders.
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