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Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle
scattering limit, for an arbitrary velocity-angle diffusion function D. The particle spectral index s is
found to be sensitive to D, particularly downstream and at certain angles. The analysis, confirmed
numerically, justifies and generalizes previous results for isotropic diffusion. It can be used to test
collisionless shock models and to observationally constrain D. For example, strongly forward- or
backward-enhanced diffusion downstream is ruled out by gamma-ray burst afterglow observations.
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Diffusive (Fermi) shock acceleration (DSA) is believed
to be the mechanism responsible for the production of
nonthermal, high-energy distributions of charged particles
in collisionless shocks in numerous, diverse astronomical
systems [1]. Particle acceleration is identified in both non-
relativistic and relativistic shocks, examples of the latter
including shocks in gamma-ray bursts (GRB’s, where
shock Lorentz factors � * 100 are inferred) [2], jets of
radio galaxies [3], active galactic nuclei [4], and x-ray
binaries (microquasars) [5].

Collisionless shocks, in general, and the particle accel-
eration involved, in particular, are mediated by electromag-
netic (EM) waves, and are still not understood from first
principles. No present analysis self-consistently calculates
the generation of EM waves and the wave-plasma inter-
actions. Instead, the particle distribution (PD) f is usually
evolved by adopting some ansatz for the scattering mecha-
nism (e.g., diffusion in velocity angle) and neglecting wave
generation and shock modification by the accelerated par-
ticles (the ‘‘test-particle’’ approximation). This phenome-
nological approach proved successful in accounting for
non-relativistic shock observations. For such shocks,
DSA predicts a (momentum p) power-law spectrum,
d3f=dp3 / p�s, where s is a function of the shock com-
pression ratio r, s � 3r=�r� 1� [6]. For strong shocks in
an ideal gas of adiabatic index � � 5=3, s � r � 4 (i.e.,
p2d3f=dp3 / p�2), in agreement with observations.

Analysis of GRB afterglow observations suggested that
the ultrarelativistic shocks involved produce high-energy
PD’s with s � 4:2� 0:2 [7]. This triggered a numerical
study of test-particle DSA in such shocks, s calculated for a
wide range of �, various equations of state, and several
scattering mechanisms ([8–10] and references therein). For
isotropic, small-angle scattering in the ultrarelativistic
shock limit, where upstream (downstream) fluid velocities
normalized to the speed of light c approach �u � 1 (�d �
1=3), spectral indices s0;ur � 4:22� 0:02 were found [8–
10], in accord with GRB observations.

DSA analysis is more complicated when the shock is
relativistic, mainly because f becomes anisotropic.
Monte Carlo simulations [8,10,11] and other numerical

techniques [9,12,13] have thus been applied to the prob-
lem. For isotropic, small-angle scattering, an approximate
expression for the spectrum was found [14],

 s0 � �3�u � 2�u�
2
d � �

3
d�=��u � �d�; (1)

and shown to agree with numerical results; in particular, it
yields s0;ur � 38=9 ’ 4:22. Although s was calculated nu-
merically for various scattering mechanisms [15], little
qualitative understanding of the dependence of s upon
the scattering ansatz has emerged. This motivates an ana-
lytical study of DSA in relativistic shocks, which may
facilitate or test future self-consistent shock models.

This Letter presents the first rigorous, fully analytical
study of DSA in relativistic shocks. The (common) as-
sumptions made are (i) the test-particle approximation,
(ii) small-angle scattering, given by some velocity-angle
diffusion function D, and (iii) D is separable into an
angular part times a space- or momentum-dependent
part. For discussion and physical examples of D, see
[1,9,12]. In the analysis, N angular moments of f are
used (and higher moments neglected) to accurately calcu-
late s even for small N. The moments are generalized in
order to accelerate the convergence with N and to obtain s
and f for arbitrary D. For isotropic diffusion, the analysis
reproduces and justifies previous results such as Eq. (1),
good results obtained even with N � 2. For anisotropic
diffusion, the dependence of s upon D is analyzed, and is
numerically confirmed and complemented. It is shown that
D can be constrained using observations, e.g., in GRB
afterglows. The analysis works equally well for arbitrarily
large �, for which numerical methods become exceedingly
difficult. Here we outline the main steps of the derivation
and present its primary implications; the full analysis is
deferred to a detailed, future paper.

Formalism.—Consider an infinite, planar shock front at
z � 0, with flow in the positive z direction. Relativistic
particles with momentum ~p much higher than any charac-
teristic momentum in the problem are assumed to diffuse in
the direction of momentum, ~� � cos�~p � ẑ=~p�, according
to some diffusion function (DF) ~D��. The steady-state PD
then satisfies the stationary transport equation [12]
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where � � �1� �2��1=2 is the fluid Lorentz factor and i 2
fu; dg are upstream or downstream indices, written hence-
forth only when necessary. Parameters are measured in the
fluid frame (when marked by a tilde) or in the shock frame
(otherwise), so the Lorentz invariant PD f� ~�; ~p; z� is the
density in a mixed-frame phase space. The absence of a
characteristic momentum scale implies that a power-law
spectrum is formed, as verified numerically [8,10]. With
our assumption that ~D�� is separable in the form
~D1� ~�� ~D2�~p; z�, we may thus write Eq. (2) as

 ��� ~��@~�q� ~�; ~�� � @ ~�	�1� ~�2� ~D� ~��@ ~�~q
; (3)

where f� ~�; ~p; z� � ~q� ~�; ~��~p�s, and the spatial dimension
was rescaled as ~� � ��1

Rz
0

~D2�~p; �z�d �z. The reduced DF
~D� ~�� � ~D1� ~��=�1� ~�2� is constant for isotropic
diffusion.

Continuity across the shock front requires that
fu� ~�u; ~pu; z � 0� � fd� ~�d; ~pd; z � 0�, where upstream
and downstream quantities are related by a Lorentz boost
of velocity c��u � �d�=�1� �u�d�. Absence of acceler-
ated particles far upstream and their diffusion far down-
stream imply that fu�z! �1� � 0 and
fd� ~�d; ~pd; z! �1� � ~f1 ~p�sd , where ~f1 > 0 is constant
(isotropic PD). Equation (3) has been solved numerically
under the above boundary conditions for specific choices
of ~D��� [9].

Angular moments.—In the shock frame, only a small
fraction of the particles travel nearly parallel to the flow
(� ’ �1), unlike the upstream frame where a substantial
part of f is beamed into a narrow, ~�u <�1� ��1

u cone.
Angular moments of the shock-frame PD,

R
1
�1 �

nfd�,
thus diminish as n � 0 increases, suggesting that the prob-
lem can be approximately formulated using a finite number
of low-nmoments. Next, we derive and solve equations for
the spatial behavior of these moments; the boundary con-
ditions are then used to determine s.

We work in the shock frame and use only shock-frame
variables henceforth, incorporating the Lorentz boosts into
the transport equations. Writing Eq. (3) in the shock frame,
using p � ~�i ~pi�1� �i ~�i� and � � � ~�i � �i�=�1�
�i ~�i�, we find that on each side of the shock

 �@�q��; �� �
@�f�1��

2�D���@�	�1� ���
sq
g

�1� ���s�3 ; (4)

where we defined q��; ��p�s � ~q� ~�; ~��~p�s, D��� �
~D� ~��, and � � �4~�. An immediate consequence is that

 

Z 1

�1
�1� ���s�3�q��; ��d� � g � const; (5)

where the boundary conditions yield gu � 0 and gd / ~f1.
Equation (5) is an expression of particle number and
energy conservation in the fluid frame [14]. A more general
corollary of Eq. (4) is that for any function h��� for which
h=� is finite and continuously differentiable,

 @�
Z 1

�1
h���q��; ��d� �

Z 1

�1
�1� ���sq@�

�
�1��2�D���@�

�
h���

��1� ����s�3�

��
d�: (6)

The spatial dependence of an angular moment Fn��� �R
1
�1 �

nq��; ��d� is given by Eq. (6) with h � �n, if n �
1. Expanding the right-hand side integrand as a power
series around � � 0, we find that @�Fn is given by a linear
combination of the moments Fa; Fa�1 . . .Fb. Here, a �
maxf0; n� 3g, b � n� 2� nD, and nD is defined as the
order of the power series of D around � � 0, D��� / 1�
d1�� d2�

2 � � � � , such that nD � 0 for isotropic diffu-
sion. In matrix form, we may write

 @�F��� � A �
F0���
F���

� �
; (7)

where F � �F1; F2; . . .�T . The (infinite) matrix A depends
on �, s, and D���, so Au � Ad. The boundary conditions
imply that fFng are continuous across the shock front � �
0, vanish as �!�1, and are finite for �! �1. We show
that a good, converging (in N) approximation to the solu-
tion is obtained using a small number N � 1 of moments,
F0 . . .FN , and neglecting higher order terms. This reduces
F to an N-component vector and A to an N � �N � 1�
matrix.

The spatial dependence of the zeroth moment F0 cannot
be related to n � 0 angular moments through Eq. (6). This

difficulty can be circumvented by adding an additional
constraint to the system of equations. Expanding the inte-
grand in Eq. (5) yields G��; s� � F��� � g; explicitly

 F1��s�3��F2�
1
2�s�3��s�4��2F3�����g; (8)

independent of D���. Equation (8) and its spatial deriva-
tive can be used to eliminate F0 and FN from Eq. (7),
giving an approximate, closed set of �N � N � 1 (or less, if
A is degenerate) ordinary differential equations (ODE’s),

 @� �F��� � �A � �F� g �G; (9)

where �F � �F1; F2; . . . ; F �N�
T . Here, �A 2 M �N and �G are

functions of A and G obtained by combining Eqs. (7) and
(8). For the relevant range of s, �A is diagonalizable over R.
Thus, there exists a real matrix P 2 M �N , such that
�P�1 �AP�mn � �n�mn and the eigenvalues f�ng of �A are
real. The solution of Eq. (9) is then

 Fn��� �
X�N

m�1

	Pnmcme�m� � gPnm�P�1 �G�m��1
m 
: (10)

The integration constants cm;u and cm;d along with gd
and s constitute 2 �N � 1 free parameters, as F is unique
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only up to an overall constant. The boundary conditions
typically impose 2 �N � 2 constraints, so the problem is
overconstrained. It is natural to relax the requirement that
FN be continuous across the shock, as this moment is
relatively small and @�FN is relatively sensitive to ne-
glected moments n * N. The resulting discontinuity of
FN at � � 0 then provides an estimate of the approxima-
tion accuracy.

As an example, consider the simplest nontrivial approxi-
mation, where moments Fn with n > N � 2 are neglected.
This is motivated, for example, by the suppression of Gn

[see Eq. (8)], A1;n and A2;n for n > 2, if s ’ 4. Here �N � 1,
and the (single) ODE yields F1��� � c1e

�� � g �G��1. For
isotropic diffusion, � � 6�� �s� 2��s� 3��s� 4��3. In
most cases of interest (where s < 5) � > 0, corresponding
to exponential decay upstream and divergence down-
stream. Therefore, c1;d must vanish, so fd is spatially
uniform in this approximation. This gives a cubic equation
for s, independent of gd and c1;u,

 �s�3��u�
F1

F2

����������0
��d�

2�s�1��d
2��s�2��s�3��2

d

: (11)

The real root of this equation, shown in Fig. 1, already
agrees with numerical results and with Eq. (1) at a 5%
level [16]; in particular, it yields s0;ur � 4:27. However, in
this simple approximation F0 is not continuous across the
shock front (it has a & 20% jump), s does not depend on
Du���, and its dependence on Dd��� is inaccurate.

The convergence of the approximation with N depends
on D, more moments required in general as nD and jdnj
increase. Because of degeneracies in A, N � 2; 3; 4;
5; 6; . . . correspond to �N � 1; 1; 2; 3; 3; . . . , and N � 6 is

required in order to improve the N � 2 approximation,
e.g., s0;ur�N � 6� � 4:24. The convergence is significantly
accelerated if the moments are properly generalized.

Generalized moments.—The analysis can be generalized
in many ways by exploiting the freedom in the definition of
the angular moments. For example, if we define Fn��� �R

1
�1 q��; ��wn���fn���d�, where ffng is an orthonormal

basis in the interval �1 � � � 1 with weight functions
fwng, then the moments fFng are simply the expansion
coefficients of q in terms of the basis ffng, i.e., q��; �� �
�nFn���fn��� [17]. With this choice of fFng, the analysis
provides direct information about the PD f. Additional
constraints on f (e.g., [14] ) may thus be used to estimate
or improve the accuracy of the approximation. The analy-
sis is mostly unchanged; it remains analytically tractable as
long as A, G can be determined analytically, although the
analogue of Eq. (11) is in general no longer a polynomial,
becoming a transcendental equation in s.

As an example, let fn��� � 	�2n� 1�=2
1=2Pn��� and
wn � 1, where Pn��� is the Legendre polynomial of order
n. The moments fFng thus equal the coefficients fLng of the
Legendre series of q. Here we cannot take N � 2, because
the corresponding eigenvalue � is negative. For N �
3; 4; 5; . . . we find �N � 2; 3; 4; . . . , with �Nu � 1; 2; 2; . . .
( �Nd � 1; 1; 2; . . . ) nonvanishing exponents upstream
(downstream). The resulting spectrum for isotropic diffu-
sion is accurate to5%; 2%; 1%; . . . ; in particular, s0;ur �

4:16; 4:21; 4:22; . . . . These results illustrate the rapid con-
vergence of the Legendre-based analysis. Note that this
method is equally applicable for arbitrarily high �,
whereas numerical methods become exceedingly difficult
as the ultrarelativistic limit is approached.

Isotropic (anisotropic) diffusion results for s with N � 5
Legendre moments are shown in Fig. 1 (Fig. 2). For iso-
tropic diffusion, previous results are reproduced, lending
rigor support for Eq. (1). The lowest order moments con-
verge quickly, giving a rough estimate of q��; �� as a sum
of components exponentially decaying in j�j and, in the
downstream, also a uniform part. The analytically calcu-
lated s, q compare favorably with numerical results, which
we calculate in the eigenfunction method of [9].

Anisotropic diffusion.—Qualitatively good results for
dn�3 � 0; dn�4 � 0 are already obtained with N � 3
Legendre-based moments. More complicated forms of
the DF, involving additional dn � 0 terms, require pro-
gressively larger N. Figure 2 shows that �s � s� s0

values far from zero can be obtained for anisotropic diffu-
sion in relativistic shocks. The spectrum is more sensitive
to Dd than it is to Du, by a factor of a few. It is more
sensitive to d1 than to d2; j�s�D � 1� dn�n�j is roughly
monotonically decreasing with n. A linear, forward-
(backward-) enhanced downstream DF, Dd � 1� d1�,
yields s > 4:3 (s < 4:0) in a � > 10 shock, if d1>0:6
(d1<�0:85). Some forward- (backward-) enhanced
choices of D lead to more extreme spectra, e.g., sur>4:6
(sur < 3:7). Constraints on Dd may thus be imposed using
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FIG. 1 (color online). DSA for isotropic diffusion according to
analytic approximations involving F0 . . .F2 [Eq. (11), heavy
curves] or L0 . . .L5 (light curves), numerical calculations
(Ref. [9], symbols) and Eq. (1) (dotted curves). Three types of
strong shocks (see [18] ) are examined: using the Jüttner-Synge
equation of state (solid curves/+ symbols), assuming a fixed
adiabatic index � � 4=3 (dashed curves/x symbols), and assum-
ing a relativistic gas where �u�d � 1=3 (dash-dotted curves/o
symbols).
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observations that rule out such s values, e.g., in GRB
afterglows.

In order to elucidate the role of D, we numerically
calculate s for small deviations �D, localized around
some angle �0, from an otherwise isotropic DF. The
parameter �s=�AD, where �AD �

R
1
�1 �D d�, depends

only weakly on the exact form of such �D. Figure 2 (inset)
shows that s is sensitive to �0, especially downstream. In
general, the spectrum hardens whenDd is enhanced at�<
�c ’ 0:4 or diminished at �>�c, and vice versa. Angles
for which �<�c (�>�c) roughly correspond to nega-
tive (positive) flux in momentum space, j� / �D���@�q,
qualitatively accounting for this behavior. One way to see
this is to note that the spectrum hardens when the average
fractional energy gain fE (of a particle crossing, say, to the
downstream and returning upstream) or the return proba-
bility (to the upstream) Pret increases; s � 3� ln�1=Pret�=
lnfE [10]. For example, enhanced diffusion in angles
where j�<0 shifts qd towards the upstream, raising both
Pret and fE. The above trend is roughly reversed upstream,
but �s is smaller there and more sensitive to details of
�Du.
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FIG. 2 (color online). DSA for anisotropic diffusion. The
spectrum is calculated numerically/with L0 . . .L5 (symbols/
curves) for D � 1� dn�

n in a � � 10, strong shock with the
Jüttner-Synge equation of state. Plotted is �s � s� s0 vs dn for
n � 1 (circles/solid curves) and n � 2 (squares/dashed curves),
downstream/upstream (filled/open symbols, heavy/light curves).
Inset: local deviations from an isotropic DF down/upstream
(heavy/light curves): D � 1� d0��w0 � j���0j� (solid
curves) and D � 1� d0 exp	�����0�

2=2w2
0
 (dashed

curves), where �d0; w0� � �0:1; 0:05� and � is the Heaviside
step function.
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