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We develop a local model for the exponential growth and saturation of the Reynolds and Maxwell
stresses in turbulent flows driven by the magnetorotational instability. We first derive equations that
describe the effects of the instability on the growth and pumping of the stresses. We highlight the
relevance of a new type of correlations that couples the dynamical evolution of the Reynolds and Maxwell
stresses and plays a key role in developing and sustaining the magnetorotational turbulence. We then
supplement these equations with a phenomenological description of the triple correlations that lead to a
saturated turbulent state. We show that the steady-state limit of the model describes successfully the
correlations among stresses found in numerical simulations of shearing boxes.
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Since the early days of accretion disk theory, it has been
recognized that molecular viscosity cannot account for a
number of observational properties of accreting objects.
Shakura and Sunyaev [1] introduced a parametrization of
the shear stress that has been widely used since. Much of
the success of their model lies in the fact that many disk
observables are determined mostly by energy balance and
depend weakly on the adopted prescription [2]. However,
this parametrization leaves unanswered fundamental ques-
tions on the origin of the anomalous transport and its
detailed characteristics.

Strong support for the relevance of magnetic fields in
accretion disks arose with the realization that differentially
rotating flows with radially decreasing angular velocities
are unstable when threaded by weak magnetic fields [3].
Since the discovery of this magnetorotational instability
(MRI), a variety of local [4,5] and global [6–8] numerical
simulations have confirmed that its long-term evolution
gives rise to a sustained turbulent state and outward
angular-momentum transport. However, global simula-
tions also demonstrate that angular-momentum transfer
in turbulent accretion disks cannot be adequately described
by the Shakura-Sunyaev prescription. In particular, there is
evidence that the turbulent stresses are not proportional to
the local shear [9] and are not even determined locally [10].

Some attempts to eliminate these shortcomings have
been made within the formalism of mean-field magneto-
hydrodynamics [11]. This has been a fruitful approach for
modeling the growth of mean magnetic fields in differ-
entially rotating media [12]. However, it has proven diffi-
cult to use a dynamo model to describe the transport of
angular momentum in these systems [13,14]. This is espe-
cially true in turbulent flows driven by the MRI, where the
fluctuations in the magnetic energy are larger than the
mean magnetic energy, and the turbulent velocity and
magnetic fields evolve simultaneously [3].

In order to overcome this difficulty, various approaches
have been taken in different physical setups. Blackman and
Field [15] derived a dynamical model for the nonlinear
saturation of helical turbulence based on a damping closure
for the electromotive force in the absence of shear. On the
other hand, Kato and Yoshizawa [16,17] and Ogilvie [18]
derived a set of closed dynamical equations that describe
the growth and saturation of the Reynolds and Maxwell
stresses in shearing flows in the absence of mean magnetic
fields.

In this Letter, we relax some of the key assumptions
made in previous works and develop the first local model
for the dynamical evolution of the Reynolds and Maxwell
tensors in turbulent magnetized accretion disks that incor-
porates explicitly the MRI as their source.

The equation describing the dynamical evolution of the
mean angular-momentum density, �l, of a fluid element in
an accretion disk with tangled magnetic fields is

 @t �l� r � ��l �v� � �r � �r �F �: (1)

Here, the overbars denote properly averaged values, �v is
the mean flow velocity, and the vector �F characterizes the
flux of angular momentum. Its radial component, �F r �
�Rr� � �Mr�, is equal to the total stress acting on a fluid
element. The stresses due to correlations in the velocity
field, �Rr� � h��vr�v�i, and magnetic field fluctuations,
�Mr� � h�Br�B�i=4�, are the Reynolds and Maxwell

stresses, respectively. A self-consistent accretion disk
model based on the solution of the equations for the
mean velocities requires a closed system of equations for
the temporal evolution of these mean stresses.

In a recent paper [19], we identified the signature of
the magnetorotational instability in the mean Maxwell
and Reynolds stresses due to correlated fluctuations of
the form �v � ��vr�t; z�; �v��t; z�; 0	 and �B �
��Br�t; z�; �B��t; z�; 0	 in an incompressible, cylindrical,
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differentially rotating flow, threaded by a mean vertical
magnetic field, �Bz. We demonstrated that a number of
properties of the mean stresses during the initial phase of
exponential growth of the MRI are approximately pre-
served in the saturated state reached in local three-
dimensional numerical simulations. As a first step in our
calculation, we aim to derive dynamical equations for the
mean stresses that describe this result.

In order to work with dimensionless variables we con-
sider the characteristic time and length scales set by 1=�0

and �vAz=�0. Here, �0 and �vAz � �Bz=
������������
4��0

p
denote the

local values of the angular frequency and the (vertical)
Alfvén speed in the disk with local density �0 at the
fiducial radius r0. The equations governing the local dy-
namics of the (dimensionless) MRI-driven fluctuations in
Fourier space, are then given by [19]

 @t�v̂r � 2�v̂� � ikn ^�br; (2)

 @t�v̂� � �q� 2��v̂r � ikn�b̂�; (3)

 @t�b̂r � ikn�v̂r; (4)

 @t�b̂� � �q�b̂r � ikn�v̂�; (5)

where �v̂i and �b̂i stand for the Fourier transforms of the
dimensionless physical fluctuations �vi= �vAz and �Bi= �Bz.
The wave number, kn, denotes the mode with n nodes in the
vertical direction and the parameter q � �d ln�=d lnrjr0

is a measure of the local shear.
Using the fact that the modes with vertical wave vectors

dominate the fast growth driven by the MRI, we obtain a
set of equations to describe the initial exponential growth
of the Reynolds and Maxwell stresses. We start from the
equations for the fluctuations (2)–(5) and use the fact that
the mean value of the product of two functions f and g,
with zero means, is given by [19]

 hfgi�t� � 2
X1
n�1

Re�f̂�kn; t�ĝ
�kn; t�	: (6)

By combining different moments of Eqs. (2)–(5) we obtain
the dimensionless set

 @t �Rrr � 4 �Rr� � 2 �Wr�; (7)

 @t �Rr� � �q� 2� �Rrr � 2 �R�� � �Wrr � �W��; (8)

 @t �R�� � 2�q� 2� �Rr� � 2 �W�r; (9)

 @t �Mrr � �2 �Wr�; (10)

 @t �Mr� � �q �Mrr � �Wrr � �W��; (11)

 @t �M�� � �2q �Mr� � 2 �W�r; (12)

where we have defined the tensor �Wij with components

 

�W rr � h�vr�jri � h�b��!�i; (13)

 

�W r� � h�vr�j�i � �h�br�!�i; (14)

 

�W �r � h�v��jri � �h�b��!ri; (15)

 

�W �� � h�v��j�i � h�br�!ri: (16)

Here, �ji and �!i, for i � r, �, stand for the components
of the induced current �j � r� �b and vorticity �! �
r� �v fluctuations. Note that the components of the
tensor �Wij are defined in terms of the correlations between
the velocity and current fields. However, for the case under
consideration, these are identical to the corresponding
correlations between the magnetic field and vorticity fluc-
tuations [Eqs. (13)–(16)].

Equations (7)–(12) show that the MRI-driven growth of
the Reynolds and Maxwell tensors can be described for-
mally only via the correlations �Wij that connect the equa-
tions for their temporal evolution. Note that, in contrast to
the correlations h�vi�!ki and h�bi�jki, that appear natu-
rally in helical dynamo modeling and transform as tensor
densities (i.e., as the product of a vector and an axial
vector), the correlations h�vi�jki and h�bi�!ki transform
as tensors. Moreover, the tensor �Wij cannot be recast in
terms of the cross helicity �Hij � h�vi�bji because, for the
unstable MRI modes, the ratio �Hij= �Wij approaches zero at
late times. Neither can �Wij be expressed in terms of the
turbulent electromotive force h�v� �bi, as the latter van-
ishes under our set of assumptions, implying that no mean
magnetic field is generated.

In order to describe the MRI-driven exponential growth
of the stresses in Eqs. (7)–(12) we need to write an addi-
tional set of dynamical equations for the evolution of the
tensor �Wij. Using appropriate combinations of different
moments of Eqs. (2)–(5), we obtain

 @t �Wrr�q �Wr��2 �W�r�� �kRr��
2 �Rr��� �kMr��

2 �Mr�; (17)

 @t �Wr� � 2 �W�� � � �k
R
rr�

2 �Rrr � � �k
M
rr�

2 �Mrr; (18)

 @t �W�r��q�2� �Wrr�q �W���� �kR���
2 �R���� �kM���

2 �M��;

(19)

 @t �W�� � �q� 2� �Wr� � � �kRr��
2 �Rr� � � �kMr��

2 �Mr�; (20)

where we have defined the set of mean wave numbers
 

� �kRij�
2 �

P
1
n�1 k

2
nRe� ^�vi ^�vj


	P
1
n�1 Re� ^�vi ^�vj


	
;

� �kMij �
2 �

P
1
n�1 k

2
nRe� ^�bi ^�bj


	P
1
n�1 Re� ^�bi ^�bj


	
:

The system of Eqs. (7)–(12) and (17)–(20) describes the
temporal evolution of the stresses during the exponential
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growth of the MRI in a way that is formally correct, with no
approximations. Motivated by the similarity between the
ratios of the stresses during the exponential growth of the
MRI and during the saturated turbulent state [19], we
propose to use the right-hand sides of Eqs. (7)–(12) and
(17)–(20) as a local model for the source of turbulence in
MRI-driven magnetohydrodynamic flows. Of course, in
the turbulent regime, the various average wave numbers
�kR;Mij will depend on the spectrum of velocity and magnetic
field fluctuations. As the lowest order model for these wave
numbers we choose

 � �kR;Mij �
2 � �2k2

max � �2

�
q�

q2

4

�
for i; j � r;�; (21)

where � is a parameter of order unity and kmax corresponds
to the wave number at which the growth rate of the fluctu-
ations reaches its maximum value, �max � q=2.

By construction, the set of Eqs. (7)–(12) and (17)–(20)
leads to the expected exponential growth of the mean
stresses driven by modes with wave vectors perpendicular
to the disk midplane. These modes, however, are known to
be subject to parasitic instabilities, which transfer energy to
modes in the perpendicular (kr, k�) directions [20]. The
initial fast growth experienced by the stresses will even-
tually be slowed down by the combined effects of non-
linear couplings between modes and of dissipation at the
smallest scales of interest.

The terms accounting for these interactions would ap-
pear in the equations for the stresses as triple correlations
between components of the velocity and magnetic fields;
i.e., they would be of the form h�vi�vj�bki and
h�vi�bj�bki. These types of nonlinear terms have also
been considered by Ogilvie [18], who proposed scalings
of the form

 h�vi�vj�bki � h�vi�vjih�bk�bki1=2 � �M1=2
kk

�Rij: (22)

In the absence of a detailed model for these correlations
and motivated again by the similarity of the stress proper-
ties during the exponential growth of the MRI and the
saturated turbulent state [19], we introduce a phenomeno-
logical description of the nonlinear effects on the evolution
of the various stresses. In particular, denoting by �Xij the ij
component of any one of the three tensors, i.e., �Rij, �Mij, or
�Wij, we add to the equation for the temporal evolution of

that component the sink term

 

@ �Xij
@t

��������sink
� �

�������
�M
�M0

s
�Xij: (23)

Here, �M=2 � � �Mrr � �M���=2 is the mean magnetic en-
ergy density in the fluctuations and �M0 is a parameter.

Adding the sink terms to the system of Eqs. (7)–(12) and
(17)–(20) leads to a saturation of the stresses after a few
characteristic time scales, preserving the ratio of the vari-
ous stresses to the value determined by the exponential

growth due to the MRI and characterized by the parame-
ter � . These nonlinear terms dictate only the saturated level
of the mean magnetic energy density according to
limt!1

�M � �2 �M0, where � is the growth rate for the
stresses, which, in the case of a Keplerian disk, with q �

3=2, is given by �2 � 2�
�������������������
1� 15�2

p
� �1� 15�2=8�	.

We infer the dependence of the energy density scale
�M0=2 on the four characteristic scales in the problem �0,
H (the vertical length of the box), �0, and �vAz using
dimensional analysis. We obtain �M0=2 / �0H���

0 �v2��
Az ,

which leads, with the natural choice � � 1, to �M0=2 �
��0H�0 �vAz, where we show the dimensional quantities
explicitly and introduce the parameter �.

Our expression for �M0 describes the same scaling be-
tween the magnetic energy density during saturation and
the various parameters characterizing the disk found in a
series of shearing box simulations threaded by a finite
vertical magnetic field and with a Keplerian shearing pro-
file [4]. By performing a numerical study of the late-time
solutions of the proposed model, we found a unique set of
values (� , �) such that its asymptotic limit describes the
correlations found in these numerical simulations.

Figure 1 shows the correlations between the r� compo-
nents of the Maxwell and Reynolds stresses and the mean
magnetic energy density found during the saturated state in
numerical simulations [4]. In our model, this ratio depends
only on the parameter � and the shear q (held fixed at q �
3=2 in the simulations). It is evident that, in the numerical
simulations, the ratios of the stresses to the magnetic
energy density are also practically independent of any of
the initial parameters in the problem that determine the
magnetic energy density during saturation (i.e., the x axis
in the plot). This is indeed why we required our model of
saturation to preserve the stress ratios that are determined

 

FIG. 1. Correlations between the Maxwell and Reynolds
stresses and mean magnetic energy density at saturation in
MRI-driven turbulent shearing boxes [4]. The lines show the
result obtained with our model in the asymptotic limit for � �
0:3.
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during the exponential phase of the MRI. Assigning the
same fractional uncertainty to all the numerical values for
the stresses, our model describes both correlations simul-
taneously for � � 0:3.

Figure 2 shows the mean magnetic energy density in
terms of a saturation predictor found in numerical simula-
tions [4]. For � � 0:3 and assigning the same fractional
uncertainty to all the numerical values for the stresses, we
obtain the best fit for � � 11:3. These values for the
parameters complete the description of our model.

In summary, in this Letter we developed a local model
for the evolution and saturation of the Reynolds and
Maxwell stresses in MRI-driven turbulent flows. The
model is formally complete when describing the initial
exponential growth and pumping of the MRI-driven
stresses, and thus satisfies, by construction, all the mathe-
matical requirements described by Ogilvie [18]. Although
it is based on the absolute minimum physics (shear, uni-
form �Bz, 2D fluctuations) for the MRI to be at work, the
model is able, in its asymptotic limit, to recover success-
fully the correlations found in three-dimensional local
numerical simulations [4].

Finally, the local model described in this Letter contains
an unexpected feature. The mean magnetic field in the
vertical direction couples the Reynolds and Maxwell
stresses via the correlations between the fluctuations in
the velocity field and the fluctuating currents generated
by the perturbations in the magnetic field. These second
order correlations, which we denoted by the tensor �Wij,
play a crucial role in driving the exponential growth of the

mean stresses and energy densities observed in numerical
simulations. To our knowledge this is the first time that
their relevance has been pointed out in either the context of
dynamo theory or MRI-driven turbulence.
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FIG. 2. The mean magnetic energy density in terms of a
saturation predictor found at late times in numerical simulations
of MRI-driven turbulence [4]. The line shows the result obtained
with our model in the asymptotic limit for � � 0:3 and � � 11:3.
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