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We present a measurement of the potential energy of an ultracold trapped gas of 40K atoms in the BCS-
BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance,
where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region
of the unitarity limit to that of a noninteracting gas, and in the T � 0 limit we extract the universal many-
body parameter �. We find � � �0:54�0:05

�0:12; this value is consistent with previous measurements using
6Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the
universality of ultracold Fermi gases in the strongly interacting regime.
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With the emergence of novel Fermi gas systems, exper-
imentalists can now access the BCS-BEC crossover in
ultracold gases of atoms. Using atomic scattering reso-
nances in gases of 40K and 6Li, it is possible to widely
tune the interatomic scattering length, a, and move con-
tinuously between a gas of weakly interacting fermions
and a gas of condensed molecules. The BCS-BEC cross-
over occurs in the strongly interacting regime where the
scattering length is large enough that �1 & 1=kFa & 1,
where kF is the Fermi wave vector. Experimental studies of
these strongly interacting Fermi systems have revealed
many interesting properties, including a phase transition
involving condensates of atom pairs [1,2], a pairing gap
[3], and vortices in a rotating gas [4].

As a gas of fermions is cooled from the classical regime
to quantum degeneracy, the Pauli exclusion principle be-
comes manifest in the properties of the ultracold gas [5,6].
For example, a zero-temperature Fermi gas in a confining
potential has a finite energy and a finite size due to Fermi
pressure, which is responsible for the stability of white
dwarf and neutron stars. As the two-body scattering length
is tuned to be arbitrarily attractive, one would expect that
the gas should be compressed due to attractive interactions
and pairing effects [7,8].

This behavior has received theoretical consideration and
should not depend on the details of the interatomic poten-
tial for a wide Feshbach resonance, where the Fermi energy
is much smaller than the energy equivalent width of the
resonance [9–12]. Furthermore, at resonance, where the
two-body scattering length a diverges, the energy of the
gas is expected to be universal [13–15] in that it depends
only on the Fermi energy EF and the relative temperature
T=TF. The density profile of a trapped T � 0 unitarity
limited gas is then expected to be simply a rescaled version
of the noninteracting density profile. This results in a
simple rescaling of the size and energy, which can be
parametrized by a universal many-body parameter �
[16,17].

Experimentally, � has been reported only for 6Li where
the size and energy of a trapped gas has been examined
[8,16,18–22]. The most precise determination, � �
�0:54� 0:05, was reported recently in Ref. [21]. While
this value is in good agreement with the predicted value, a
measurement using a different atomic species is essential
to demonstrate the universality of strongly interacting
Fermi gases. Here we report on a measurement of the
potential energy at resonance for an ultracold gas of 40K.
We have also measured the potential energy throughout the
strongly interacting regime and investigated the tempera-
ture dependence of the potential energy at resonance.

For these experiments we cool a gas of fermionic 40K
atoms to ultracold temperatures using previously described
methods [23]. A nearly equal mixture of the two lowest
energy hyperfine spin states, jf;mfi � j9=2;�9=2i and
j9=2;�7=2i, is confined in a crossed beam optical dipole
trap. The trap consists of a horizontal laser beam parallel to
ẑwith a 1

e2 radius of 32 �m and a vertical beam parallel to ŷ
with a 1

e2 radius of 200 �m. For the experiments reported
here the harmonic trap frequencies were typically
!r=2� � 184 Hz and !z=2� � 18 Hz. Approximately
105 atoms per spin state are cooled to a final temperature
of T � 0:08TF, where TF � EF=kb is the Fermi tempera-
ture and kb is Boltzmann’s constant.

The final evaporative cooling of the gas occurs on the
BCS side of the magnetic-field Feshbach resonance where
a � �1000a0. The optical trap is then ramped up to
approximately 1.5 times of the shallowest trap depth used
for evaporation. To vary a, the magnetic field is adiabati-
cally ramped to various final values. The optical trap is
then suddenly switched off and the gas is allowed to
expand for 1.867 ms. During this short expansion time
there is significant expansion in the radial direction but
negligible expansion of the cloud in the axial direction. We
then use absorption imaging to probe the density distribu-
tion of the atom cloud. The probe beam propagates along
one of the radial directions, x̂, and is pulsed on for 40 �m.
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For each absorption image, we perform a 2D surface fit to a
finite temperature Fermi-Dirac function

 OD �y; z� � pkg2���e
��y2=2�2

y���z2=2�2
z ��=g2����; (1)

where � , �y, �z, and pk are independent fitting parameters
and gn�x� �

P
1
k�1

xk
kn [24]. This is the expected optical

depth (OD) distribution for a noninteracting cloud both
in trap and after expansion. Empirically we find that this
function also fits well in the strongly interacting regime.
The potential energy of the trapped gas is obtained from
the cloud profile in the axial direction. The potential energy
per particle in the axial direction (ẑ) is given by

 Epot �
1

2
m!2

z�2
z
g4����
g3����

; (2)

where m is the mass of 40K.
It is useful to normalize the measured potential energy of

the strongly interacting gas to that of an ideal (noninteract-
ing) Fermi gas. In previous experiments using 6Li atoms,
the measured cloud sizes and energies were normalized to
a calculated value for the noninteracting gas. This can
introduce systematic errors because the calculation relies
on the atom number and trap frequencies, which can have
systematic errors. However, for the 40K Feshbach reso-
nance, we are able to reduce the systematic uncertainty
by measuring the potential energy of the noninteracting
gas. This can be accomplished by going to the zero cross-
ing of the resonance where a � 0, which is only 10 G
away. The measured potential energy ratio for an ultracold
40K gas is displayed in Fig. 1 as a function of 1=k0

Fa. In this
Letter we use a superscript naught �0� to denote measure-
ments made in the noninteracting regime. The inset of
Fig. 1 focuses on the strongly interacting region near the
resonance. As expected, the data show that the interactions
cause a strong reduction in the potential energy due to a
compression of the trapped gas. One would expect that on
the BEC side of the resonance Epot will depend on con-
densate fraction. For temperatures similar to these ex-
periments we find a maximum condensate fraction of
approximately 15% on resonance; this fraction decreases
as detuning from the resonance is increased [1].

The error bars in Fig. 1 include statistical uncertainty in
repeated measurements as well as an uncertainty due to
heating during the magnetic-field ramps. The magnetic-
field ramps must be sufficiently slow to be adiabatic;
however, heating during the ramp can be a problem for
slower ramps. For the different final magnetic fields we
investigated the dependence of the measured potential
energy on the duration of the linear ramp. An example of
this is shown in Fig. 2 where the gas was ramped from the
magnetic field used for evaporation (203:39� 0:01 G) to
the resonance position.

To determine the optimum ramp rate, as well as the
effect of heating on the potential energy measurement,
we fit data such as that shown in Fig. 2 to an exponential

decay plus linear heating. From the fit we determine the
final potential energy of the cloud if heating were not
present. This introduces a correction that is applied to the
data shown in Fig. 1. Note that on the BCS side of the
resonance we see little or no heating due to magnetic-field
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FIG. 1. Measured potential energy Epot normalized to the
value measured in the noninteracting regime E0

pot vs 1=k0
Fa.

Here �0� denotes a quantity measured in the noninteracting
regime, i.e., at the zero crossing of the s-wave scattering length.
The resonance is located at 202:10� 0:07 G [1]; the dashed
lines show the uncertainty in the resonance location. Data points
toward the BCS limit show good agreement with a zero-
temperature mean-field calculation (solid line). The larger error
bars on the BEC side of the resonance reflect uncertainties due to
heating of the gas due to inelastic loss. In the strongly interacting
region there exists �0:1 uncertainty in 1=k0

Fa due to uncertainty
in the resonance position. Inset: Subset of the data focusing on
the strongly interacting region near resonance.
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FIG. 2. Measured potential energy at the Feshbach resonance
vs magnetic-field ramp duration. For very fast ramps, we mea-
sure a higher energy because of nonadiabaticity. For very slow
ramps, heating due to inelastic collisions increases the measured
energy.
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ramps, and the error bars are dominated by shot-to-shot
statistical uncertainty.

We can gain some theoretical insight into the effect of
interactions on the energy of our trapped gas by consider-
ing a simple mean-field approach. While this approach
neglects pairing and therefore is not sufficient to fully
understand the behavior of our gas, it provides a flavor of
how the potential energy is affected by interactions.
Following the argument outlined in Ref. [17], the equation
of state for an ideal zero-temperature Fermi gas is

 � � �F�x� �UMF�x� �Utrap�x�; (3)

where � is the chemical potential, �F�x� is the local Fermi
energy, UMF�x� is the mean-field contribution, and Utrap�x�
is the trapping potential. We can relate �F�x� � @

2

2m k
2
F�x� to

the density n�x� � 1
6�2 k3

F�x� via �F�x� � @
2

2m �6�
2n�x�	2=3.

The interactions appear in the density dependent mean-
field contribution, UMF�x� � 4�@2a

m n�x�. This equation can
be solved self-consistently to determine the in-trap density
profile of the cloud, and thus the potential energy per atom.
In Fig. 1 we compare the data to the mean-field calculation
(solid line) for the normal state on the BCS side of the
resonance [23]. Near the resonance, in the strongly inter-
acting regime, it is clear that this approximation breaks
down and a more sophisticated theory is required.

Very near the resonance the scattering length a diverges
and the equation given above for UMF�x� becomes unphys-
ical. At resonance (1=kFa � 0), the only energy scale is
the Fermi energy; this give us an approximate effective
scattering length aeff � �1=kF. This substitution shows
that the local mean-field energy is proportional to the
Fermi energy, and one can define a constant of proportion-
ality � given by UMF�x� � ��F�x� [8,16]. In this simple
mean-field estimate, UMF�x� � � 4

3� �F�x�, or �MF �

�0:41. The negative sign for the scattering length is not
obvious from this approach, but a more sophisticated
many-body approach shows the mean-field interaction
should be attractive [13]. Now we can write Eq. (3) as

 � � �1� ���F�x� �Utrap�x�: (4)

Solving for the density profile for a harmonic trap and
then integrating to find the energy per particle, one finds
that the potential energy of a T � 0 gas in the unitarity
limit is simply Epot �

3
8�, just as in the case of a non-

interacting Fermi gas. To find the ratio of the chemical
potential at resonance� to that for a noninteracting gas�0,
we hold the number constant for each case, N �R
n0�x�d3x �

R
n�x�d3x, to find

 

�

�0 �
�������������
1� �

p
: (5)

Thus, the universal parameter � can be extracted by mea-
suring the ratio of the potential energy at resonance to the

potential energy of a noninteracting, trapped Fermi gas, in
the T � 0 limit.

From the data in Fig. 1, we find E=E0 � 0:70� 0:02 on
resonance giving �
 � �0:51� 0:03. Whereas � is nor-
mally defined only for T � 0, we introduce �
� to denote
that the system is at a finite temperature �T=TF�0 � 0:08�
0:01. This experiment was conducted at the Feshbach
resonance, and the error bars include statistical error as
well as the heating effects mentioned above. Including
uncertainty in the resonance position we find �
 �
�0:51�0:04

�0:12.
We now consider experimentally the question of

whether the gas is sufficiently cold to be in the T � 0 limit
as required for an accurate determination of�. In Fig. 3 we
show the measured potential energy ratio as a function of
�T=TF�

0. In this experiment, we heat the gas by parametri-
cally modulating the optical trap strength. However, before
heating the gas, we first increase the optical trap depth to
prevent number loss and ensure harmonic confinement.
Both the resulting temperature �T=TF�0 and k0

F are deter-
mined using an ultracold cloud prepared as described
above and slowly ramping the magnetic field to the point
where a � 0 just before the trap is turned off. The gas is
allowed to expand freely for 14 ms and fit according to
Eq. (1). We extract �T=TF�0 from the fugacity � of the
noninteracting cloud using g2���� � ��T=TF�

�3=6. It is
important to note that in this experiment we expect the
magnetic-field ramps to keep the entropy constant but not
the temperature.

The data in Fig. 3 clearly show that the universal many-
body parameter � depends strongly on temperature.
Furthermore, it is not clear that a gas at �T=TF�0 � 0:08
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FIG. 3. Potential energy Epot normalized to the measured
energy in the noninteracting regime E0

pot vs the noninteracting
gas temperature �T=TF�0. The cloud is heated by parametrically
modulating the trapping potential. For these data the trapping
frequencies in the radial direction vary from�180 to 450 Hz and
in the axial direction from �18 to 21 Hz.
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is sufficiently cold to determine the T � 0 limit of �. For
the purpose of extrapolating to zero temperature, we fit a
quadratic function to the data points below �T=TF�0 �
0:25 for which we find � � �0:54�0:05

�0:12. The error bars
reflect the uncertainty in the extrapolation to T � 0 and the
uncertainty in the resonance position. This value of the
universal many-body parameter �, as well as the value at
�T=TF�

0 � 0:08, is in good agreement with Monte Carlo
calculations [25–29] and recent theoretical calculations
[30–33]; in particular, we note � � �0:545 in Ref. [30].
These values are also in good agreement with multiple
experimental reports in 6Li: � � �0:73�0:12

�0:09, �0:61�
0:15, �0:49, and �0:54� 0:05 in Refs. [20–22,34], re-
spectively. We also note that from the kinetic energy
measurement in 40K reported in Refs. [23,35], we can
extract � � �0:62� 0:07 [36]. This is in good agreement
with the value of � found using the potential energy
presented in this Letter.

In summary, we have studied the potential energy of a
strongly interacting quantum degenerate gas of 40K Fermi
atoms. At resonance limit our results are consistent with
current theory as well as previous experiments in 6Li,
thereby strengthening the theory of universality of these
Fermi gas systems. Universality necessarily assumes that
the s-wave Feshbach resonances in 40K and 6Li are wide.
The question of whether the 40K Feshbach resonance is
wide has been under debate [10,12,37,38]; however, the
good agreement of our results with 6Li provides compel-
ling evidence that 40K is also a wide resonance. We have
also measured the temperature dependence of a universal
many-body parameter that could be compared to recent
Monte Carlo results for the temperature dependent energy
of a homogeneous Fermi gas [29,39].
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