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By utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is
identified with their capacity for interference. We consider processes acting on the internal degree of
freedom (e.g., spin or polarization) of the interfering particle, preparing it in states �A or �B in the
respective path of the interferometer. The maximal visibility depends on the choice of interferometer, as
well as the locality or nonlocality of the preparations, but otherwise depends only on the states �A and �B
and not the individual preparation processes themselves. This allows us to define interferometric measures
which probe locality and correlation properties of spatially or temporally separated processes, and can be
used to differentiate between processes that cannot be distinguished by direct process tomography using
only the internal state of the particle.
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A defining feature of quantum mechanics is the phe-
nomenon of single particle interference. The ability of a
state to display interference, or of a quantum process to
preserve this ability, are intuitive notions of coherence and
coherent evolution. We elaborate this idea to define inter-
ferometric fidelity and coherence measures, generalizing
the coherent fidelities between quantum channels intro-
duced in Refs. [1,2]. Interferometry has played an impor-
tant role in the development of theoretical concepts in
quantum mechanics, from which-way experiments [3] to
geometric phases [4]. By introducing mixed states and
quantum channels into this realm, we obtain a rich struc-
ture [5] which we address in this Letter with focus on
coherence. Apart from these fundamental aspects, coher-
ence is a prerequisite for quantum information processing.
To construct practically useful fault tolerant error correc-
tion schemes, it is important to understand the coherence
and correlation properties of the processes that act in
physical implementations [6]. The measures put forward
in this Letter provide means to probe these properties
interferometrically.

We briefly review the Mach-Zender interferometer
[Fig. 1(a)]. A single particle passes a beam splitter, which
causes the particle to traverse two paths in super-
position allowing interference at a second beam-splitter.
The probabilities to detect the particle at the outputs,
pA �

1
2 �1� cos�� and pB � 1� pA, depend on a phase

shift � in one path. The visibility v � �pA��max� �
pA��min��=�pA��max� � pA��min�� of the interference pat-
tern is unity when the two paths are perfectly coherent, and
there is no way, even in principle, to obtain any information
about which path the particle ‘‘actually’’ took [3].

We now introduce an internal degree of freedom to the
particle (e.g., polarization, spin), described by a Hilbert
space H I, and assume that the beam splitters and mirrors
do not affect this internal state. A unitary operation U
acting on the internal state is placed in one path

[Fig. 1(b)]. If the internal state initially is j i, this results
in the new interference pattern pA �

1
2 �1� v cos��� ���

with visibility v � jh jUj ij and phase shift � �
arg�h jUj i�. The internal state entangles with the path,
and path information could be extracted by using the
distinguishability between j i and Uj i to a degree that
corresponds to the reduction of visibility. For a mixed input
�, the interference can be expressed as F��� � vei� �
Tr��U� [7]. We refer to F as the interference function.
The phase shift argF��� has been used to define parallel
transport of mixed states [8–10], but here we consider the
visibility jF���j of the interference effect.

If we insert into each path a process acting on the
internal state of the particle, it seems reasonable to ask
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FIG. 1 (color online). (a) Mach-Zender Interferometer. An
initial beam splitter places an incident particle into a coherent
superposition of traveling along the lower and upper paths. A
phase shifter introduces a relative phase shift between the two
paths before they recombine on a second beam splitter, and the
final direction of the particle is measured. (b) A unitary operation
in one path modifies the interference depending on the overlap
between the interfering states j i and Uj i.
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how the interference is modified [Fig. 2(a)]. Suppose these
processes can be described by quantum channels, i.e.,
trace-preserving completely positive maps, �A and �B
respectively, what would be the corresponding interference
function? Surprisingly [1,2,9,10], the interference is not
determined solely by �A and �B but additional properties
of the processes are required in order to uniquely determine
F���. More generally, the ‘‘marginal’’ channels �A and �B
do not uniquely determine the joint operation � acting on
the two paths [5]. Adopting the terminology in Refs. [2,5],
a joint channel � is a gluing of the channels �A and �B.

In many cases the two processes are independent; e.g.,
they occur at spacelike separation and do not preshare
either classical correlation or entanglement. We call such
a total operation a local subspace preserving (LSP) opera-
tion [5]. It has been shown [2] that all possible interference
functions of LSP gluings of channels �A and �B can be
written as

 F��� �
X
kl

bla�kTr�AykBl��; (1)

where jj ~ajj2, jj ~bjj2 	 1, and fAkg and fBlg are arbitrary, but
fixed linearly independent Kraus representations [11] of
the channels �A and �B, respectively.

From Eq. (1) one can see that it is possible to define an
operator ~A0 �

P
kakAk, and similarly an operator ~B0, such

that F��� � Tr� ~Ay0 ~B0��. In the terminology of Ref. [1]
these are the coherence operators of the processes. By a
unitary transformation it is always possible to find a Kraus
representation with the coherence operator as one of the
Kraus operators. The coherence operator then corresponds
to the environment being undisturbed by the particle, while
the other operators represent cases when the environment
experiences a ‘‘scattering event’’ and the coherence of the
particle is lost.

Another approach to subspace local gluings is to use
Stinespring dilations [12] to represent the channel
�A��� � TrEA�UA�� 
 jE

A
0 ihE

A
0 j�U

y
A�, where jEA0 i is a state

of an environment/ancilla. Using a separate ancilla we
can similarly represent �B. It can be shown [2] that all
LSP gluings of �A and �B can be obtained as ���� �
TrEAEB�U� 
 jE

A
0 ihE

A
0 j 
 jE

B
0 ihE

B
0 jU

y�, where U � jAi�
hAj 
 UA 
 IB � jBihBj 
 IA 
 UB, by varying the

Stinespring dilations [Fig. 3(a)]. Note that the coherence
operators can be written ~A0 � hEA0 jUAjEA0 i and ~B0 �
hEB0 jUBjEB0 i, which demonstrates that the choice of
Stinespring dilations directly determines the LSP gluing
and hence the interference. One also sees that the coher-
ence operators indeed correspond to the case when the
environment remains unchanged, as mentioned above.

So far we have considered LSP gluings, but we may also
consider more general types of gluings. A subspace pre-
serving (SP) channel does not transfer probability weight
between the two paths, i.e., the particle does not ‘‘jump’’,
but apart from this restriction the process may use any
communication or shared classical or quantum correlations
[5]. In this case the interference function is similar to
Eq. (1), but with bla�k generalized to a matrix Clk satisfying
CCy 	 I [2]. Similarly, as for the LSP gluings, it can be
shown [2] that all SP gluings can be reached through
various choices of Stinespring dilations of the glued chan-
nels, but with the difference that the two paths share a
common ancilla [Fig. 3(b)].

The ordinary interferometer has only a limited capacity
to determine gluings. By inserting a variable unitary op-
erator in one arm [Fig. 2(b)] we create a generalized
interferometer whose generalized interference function
G��;U� can distinguish between all SP (and LSP) gluings
of two given channels [2],

 G��;U� �
X
kl

ClkTr�AykUBl��: (2)

We can now define fidelity and coherence measures
based on the maximum allowed interference for given
states, in analogy to Uhlmann’s fidelity for states [13]
(extended to channels in Ref. [14]) F �Uhl���A; �B� �
supj�i;j�ijh�j�ij, where j�i and j�i purify �A and �B,
respectively.
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FIG. 3. (a) LSP gluing of �A and �B modeled by unitaries UA
and UB acting on � and separate ancillas in states jEA0 i and jEB0 i.
In an interferometric picture � corresponds to the internal state,
and jAi to the path state. UA and the variable phase shift � are
conditioned upon jAi, while UB is conditioned upon path state
jBi. (b) SP gluing of �A and �B, where the paths share a
common ancilla in state jE0i.
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FIG. 2. (a) The internal state of the particle is affected by the
channels �A or �B. The gluing and the interference is not
uniquely determined by �A and �B. (b) A generalized interfer-
ometer is obtained by inserting a variable unitary operator. This
setup can distinguish all gluings of two given channels.
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If the particle initially is in the internal state j i, the first
beam splitter causes the superposition j�i � �jAij i �
jBij i�=

���
2
p

, where the orthonormal states jAi and jBi
correspond to the two paths of the interferometer. We
define the subspace local coherent fidelity F �LSP���A; �B�
as the maximal visibility achievable for all possible LSP
operations preparing �A and �B in their respective path,
i.e., all LSP operations � such that hAj��j�i�
h�j�jAi � �A=2 and hBj��j�ih�j�jBi � �B=2. Hence,

 F �LSP���A; �B� � sup
jj ~ajj2;jj ~bjj2	1

jF�j ih j�j; (3)

where ~a and ~b are as in Eq. (1). We might expect that
Eq. (3) would depend on the choice of marginal channels
�A and �B, and that we would have to optimize over all
channels such that �A�j ih j� � �A and �B�j i�
h j� � �B. However, this is not the case as we show below,
F �LSP� depends only on �A and �B, and we can choose any
feasible channels �A and �B to form the LSP gluings.
Obviously, the choice of initial internal state j i does not
matter, as long as it is pure.

Note that F�j ih j� � ~ayQ ~b, where Q is a matrix with
elements

 Qkl � h jA
y
kBlj i: (4)

It follows that the maximum of jF�j ih j�j (fixing �A and
�B) is equal to the largest singular value of Q.

A set of (not necessarily normalized) pure states fjakig is
a pure decomposition of �A if �A �

P
kjakihakj. Let fjblig

be a pure decomposition of �B and consider the matrix M
with elements Mkl � hakjbli. It can be shown that the
singular values of M are independent of the choices of
pure decompositions. In particular, we may use the spectral
decompositions, with eigenvalues �A�B�k and orthonormal
eigenvectors j ~ A�B�k i, to obtain Mkl � ��Ak�

B
l �

1=2h ~ Ak j ~ 
B
l i.

The kth singular value of M is sk�M� � �k�
�������������������������������
�B
p

�A
������
�B
pp
�,

where �k is the kth eigenvalue of the enclosed operator.
Returning to Eq. (4), since �A�j ih j� � �A, fAkj ig is

a pure decomposition of �A. Similarly, fBlj ig is a pure
decomposition of �B. Thus, the singular values of Q are
independent of the channels �A and �B that generate �A
and �B, and we obtain

 F �LSP���A; �B� � �max�
�������������������������������
�B
p

�A
������
�B
pq
�; (5)

where �max denotes the largest eigenvalue.
We define the subspace preserving coherent fidelity

F �SP���A; �B� similarly as for F �LSP�, but allowing all SP
gluings. It can be shown that the maximum of jF�j ih j�j
for all SP gluings is equal to supCCy	IjTr�CQ�j �P
ksk�Q�, with Q defined in Eq. (4). Since the singular

values of Q are independent of the chosen channels,

 F �SP���A; �B� � Tr
�������������������������������
�B
p

�A
������
�B
pq

� F �Uhl���A; �B�: (6)

This result is also obtainable from the Stinespring con-

struction of the SP gluings. For all purifications j�i and j�i
of �A and �B, there are Stinespring dilations such that the
resulting gluing [Fig. 3(b)] implements the transformation
�jAi � jBi�j ijE0i=

���
2
p
! �jAij�i � jBij�i�=

���
2
p

, which
has visibility v � jh�j�ij, for which the maximum over
all purifications is the Uhlmann fidelity.

The coherent fidelities measure the coherent overlaps of
the two states interfering at the beam splitter. In keeping
with the notion that unitary operations preserve coherence
(though not necessarily the fidelity) of states, we would
like to characterize purely the coherence of a preparation.
For example, if j i and j ?i are orthogonal, a possible
global state is �jAij i � jBij ?i�=

���
2
p

, but the coherent
fidelity measures are zero. However, by a subspace local
unitary transformation rotating j ?i into j i, we may
regain the maximal visibility reflecting this potential ca-
pacity for interference. To quantify this, we employ the
generalized interferometer and define G�LSP���A; �B� be-
tween two states �A and �B as the maximal visibility that
can be reached for all possible unitary shifts U and for all
possible LSP operations that prepare the states �A and �B
[Fig. 2(b)]. If we initially fixU, the calculation is almost as
for previous measures, except that Eq. (4) is replaced with
~Qkl � h jA

y
kUBlj i. We find that the singular values of

this matrix are independent of the choices of feasible
channels, yielding

 G �LSP���A; �B� � sup
U
�max�

�����������������������������������������
�B
p

U�AU
y ������
�B
p

q
�

�
�������������������
�max��A�

q �������������������
�max��B�

q
: (7)

Note that this measure is a product between two quantities
each related only to local objects. Similarly, allowing SP
operations in the generalized interferometer yields

 G �SP���A; �B� � sup
U

Tr
�����������������������������������������
�B
p

U�AUy
������
�B
p

q

�
X
k

���������������
�#k��A�

q ���������������
�#k��B�

q
; (8)

where �#k denotes the eigenvalues of the enclosed operator
sorted in a nonincreasing order.

The interferometric measures introduced in this Letter
lend themselves to experiment, and can serve as tools to
probe the dependence or independence of physical pro-
cesses. Since these measures are independent of the mar-
ginal channels (�A and �B), this technique may be used
even if we do not know them. If the input internal state is
pure it suffices to know the states �A and �B. If the
visibility exceeds what is obtainable with LSP gluings,
then we can conclude that the total process cannot be
subspace local. More generally, the interferometric ap-
proach allows us to differentiate between processes,
although these are indistinguishable if regarded as opera-
tions on the internal state of the particle. For example,
consider the transverse relaxation of a qubit, turning all
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input qubit states into incoherent mixtures of the j0i and j1i
states. This channel can be obtained as the average output
from a projective measurement of �Z [Fig. 4(a)]. The
maximum visibility obtainable with this process in one
path of an interferometer is vmax � 1. The same marginal
channel results from the circuit outlined in Fig. 4(b), how-
ever the maximal visibility is vmax � 1=

���
2
p

in this case.
Thus, the interferometer distinguishes between these two
processes, although a direct process tomography on the
internal state would reveal no difference.

Instead of a spatial interferometer, we can also consider
temporally separated paths and processes. Time-bin pho-
tonic qubits, described in Ref. [15], propagating in a ma-
terial with minimal effect on the timing of the pulses, is
analogous to the path degree of freedom in Fig. 1, and
photon polarization to the internal degree of freedom. If
polarization decoherence is due to ‘‘classical’’ perturba-
tions of the optical fiber (e.g., vibrational or thermal) the
visibility could be expected to be high for short time
delays, since the two pulses experience highly correlated
noise and thus the gluing would be an SP operation. If the
delay exceeds the autocorrelation time of the perturbations,
the gluing is LSP and the visibility would drop below the
threshold for independent quantum channels [1].
Determining noise correlation is important for tuning
data encoding either for communication (e.g., whether to
use product or entangled signal states [16,17]) or compu-
tation (highly correlated noise can magnify error probabil-
ity for concatenated codes [18]).

In conclusion, we define interferometric measures of
fidelity and coherence between states, quantifying the
‘‘quantumness’’ of the preparation processes in that they
correspond to the capacity of the operations to preserve the
ability of the particles to interfere. We define four measures
based on the maximal visibility obtainable in an interfer-

ometer, differing with respect to the locality or nonlocality
of the preparation procedures, as well as the choice of
interferometer. In the case of the standard Mach-Zender
interferometer and nonlocal operations in the form of sub-
space preserving channels [5] we obtain the Uhlmann
fidelity as the maximal visibility. The operational nature
of these measures lend themselves to experiment, as well
as for investigating coherence and correlation of spatially
or temporally separated physical processes, which is im-
portant for the tuning of encoding and error correction
schemes to the characteristics of the underlying processes
causing decoherence [6]. One can consider extending the
ideas presented in this Letter, allowing mixed input states,
the concatenation of several channels which could be
generalized to (Markovian) continuous quantum channels,
and analogous measures for the channels themselves.
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FIG. 4. In the upper path of an interferometer is a channel that
converts all input states into incoherent mixtures of the basis
states, i.e., transverse relaxation (or T2 process in spin dynam-
ics). This can arise either from, e.g., (a) an effective measure-
ment modeled by a controlled NOT onto a measurement qubit or
(b) by a Hadamard gate applied on the ancillary qubit, followed
by a �z gate conditioned on the ancilla.
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