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It is shown, by means of Monte Carlo simulation and finite size scaling analysis, that the Heisenberg
spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical
temperature, at which both a spin glass and a chiral glass ordering develop. The Monte Carlo algorithm,
adapted from lattice gauge theory simulations, makes it possible to thermalize lattices of size L � 32,
larger than in any previous spin-glass simulation in three dimensions. High accuracy is reached thanks to
the use of the Marenostrum supercomputer. The large range of system sizes studied allows us to consider
scaling corrections.
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Recently, decisive evidence for a spin-glass transition
[1] in three-dimensional Ising spin glasses was found by us
[2] and by Palassini and Caracciolo [3]. These works
demonstrated the applicability to spin glasses of our ap-
proach [4,5] to finite size scaling (FSS) at the critical
temperature, as well as that of Caracciolo and co-workers
[6] for the paramagnetic state (see also [7,8]).

However, the situation is still confusing for Heisenberg
spin glasses [9–17], which is the more experimentally
interesting case (see, e.g., [18,19]). Indeed, numerical
studies are the only theoretical tool to achieve progress in
three dimensions. Early simulations [9] could not reach
low enough temperatures due to the dramatic dynamical
arrest of the algorithms available at the time, and con-
cluded that the critical temperature, Tc, was strictly zero.
Yet, recent studies at lower temperatures [16,17] found
indirect indications of a spin-glass transition for Heisen-
berg spin glasses. Matters are further complicated by the
Mauger et al. [12] suggestion of a low temperature chiral
glass phase, with an Ising-like ordering due to the handed-
ness of the noncollinear spin structures (see definitions
below). The simulations of Kawamura and co-workers
[13,14] gave ample support to this spin-chirality decou-
pling scenario (i.e., Tc � 0 for the spin glass, but Tc > 0
for the chiral glass ordering).

In order to clarify the situation for Heisenberg and XY
spin glasses in D � 3, Young and Lee [15] have recently
tried our FSS methods at Tc [2,4]. Although parallel tem-
pering only allowed them [15] to thermalize systems of
size up to L � 12, very clear results were reached for the
XY spin glasses. The finite-lattice correlation length [20],
�L, was analyzed for several system sizes L. As expected
[2,4,5], the dimensionless ratio �L=L crosses neatly at the
same Tc, for the chiral glass and the spin-glass ordering, for
XY spin glasses. In the more important case of Heisenberg
spin glasses, their results, although inconclusive, were
interpreted also as lack of spin-chirality decoupling. This
conclusion has been criticized by Kawamura and

Hukushima [14], that studied somehow larger systems on
very few samples.

Here we show that a finite-temperature spin-glass tran-
sition occurs for the Heisenberg spin glass in D � 3. The
critical temperature for the spin-glass transition coincides
with that of the chiral glass. Our results rely on
Monte Carlo simulation and FSS analysis at Tc [2,4,5].
We adapt a lattice gauge theory algorithm [21] to our
problem. Our algorithm thermalizes L � 32 systems,
well beyond any previous spin-glass simulation in D �
3. The use of Marenostrum, one of the world’s largest
computing facilities, during (the equivalent of) 2:6� 104

Pentium IV computing days allowed us to simulate
4000 samples. The phase transition seems to be of the
Kosterlitz-Thouless type [22], although we may not ex-
clude a lower critical dimension barely smaller than 3.

We consider the Edwards-Anderson model. The
Heisenberg spins ~Si � �Sxi ; S

y
i ; S

z
i �, ~Si � ~Si � 1, live on the

nodes a cubic lattice of size L, with periodic boundary
conditions. Spins interact via the Hamiltonian (hiji indi-
cates sum over all pairs of lattice nearest neighbors):

 H � �
X
hi;ji

Jij ~Si � ~Sj: (1)

The Jij are Gaussian distributed quenched random cou-
plings [1]. Their mean value is zero, while their variance
sets the energy unit. For any quantity, O, we first calculate
the thermal average for the given couplings, hOiJ. The
average over the Jij, h �OiJ, is only taken afterward.

In order to detect nonplanar spin structures, one forms
the chiral (pseudovector) density field [13]:

 �i� � ~Si�ê� � �
~Si � ~Si�ê�� �� � x; y; z�; (2)

where ê� is the unit lattice vector along the � axis.
We introduce real replicas [1]: pairs of spin configura-

tions, ~S�1�i and ~S�2�i independently evolving with the same
set of couplings, fJijg, and at the same temperature, T. We
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have as well a replicated field for the chiral densities, (2).
From the real replicas we form the tensor field q���~ri� and
the chiral vector field �i;�: (�; � � x; y; z)

 q�;��~ri� � S�1�i;�S
�2�
i;�; �i;� � � �1�i;��

�2�
i;�: (3)

Their Fourier transforms,

 q̂ �;�� ~k� �
XN
i�1

q�;�� ~ri�ei
~k� ~ri

L3 ; �̂�� ~k� �
XN
i�1

�i;�ei
~k� ~ri

L3 ;

(4)

yield the spin-glass (SG) wave vector dependent suscepti-
bility and the chiral glass (CG) one:

 

�SG� ~k�

L3
�
X
�;�

hjq̂�;�� ~k�j
2iJ;

��CG�
~k�

L3 � hj�̂�� ~k�j
2iJ:

(5)

Both for the SG and the CG case, we have [20]:

 �L �
1

2 sin�kmin=2�

�
��~0�

�� ~kmin�
� 1

�
1=2
; (6)

where ~kmin � �2�=L; 0; 0� or permutations. One has �?CG or
�kCG for ê� � ~kmin � 0 or 2�=L, respectively [15].

Rotational invariance at Tc implies �?CG � �kCG for large L.
Model (1) was simulated with a mixture of heat bath and

(microcanonical) overrelaxation taken from lattice QCD
[21], but also effective for frustrated spin models [23]. We
straightforwardly modified the implementation for Jij � 1
in [5]. The elementary Monte Carlo step (EMCS) consists
on a sequential heat bath sweep, followed by (the integer
part of) 5L=4 sequential overrelaxation sweeps, to let the
microcanonical wave run over the system. Overrelaxation
evolves chirality fast (in D � 1 it inverts the local chi-
rality). One heat bath update is roughly as CPU time
consuming as 7 overrelaxations. The merits of the mixed
algorithm can be assessed from Fig. 1 (standard parallel
tempering reached only L � 12 for the same model [15]).
Overrelaxation may be combined with parallel tempering,
but this is unnecessary at Tc. Lattices L � 4, 6, 8, 12, 16,
24, and 32 were simulated close to Tc � 0:16�2� [13,15]
(see Table I). We extrapolate to nearby temperatures using
bias-corrected [24] data reweighting [25].

Thermalization is a major issue in SG simulations. Our
thermalization tests included the by now standard log2 data
binning (i.e., average over all samples the second half of
the generated data, and compare this average with that of
the second fourth of the Monte Carlo history, the average
over the second eighth, and so on), finding compatibility
for the last three bins. Another strong thermalization test is
the consistency of the reweighting extrapolation [25]. As
Fig. 3 shows, the reweighting extrapolation is satisfactory
for our data. It is a nice check, because simulations at
different T are completely independent.

We use the quotients FSS method [4]. The used scaling
variable is �L=L [4,6], rather than the unknown L=�1 or
�T � Tc�L1=�. For an observable O, diverging in the large
L limit as h �OiJ;L�1 / jT � TcjxO , we compare h �OiJ in
lattices L1 and L2, at the crossing temperature TL1;L2

such that �L1
�TL1;L2�=L1 � �L2

�TL1;L2�=L2:

 

hOL2
�TL1;L2�iJ

hOL1
�TL1;L2�iJ

�

�
L2

L1

�
xO=�
� . . . ; (7)

where � is the correlation length critical exponent (the dots
stand for scaling corrections [5]). The advantages of
Eq. (7) are many [2,4,7,24]. It is easy to use. Arbitrary
choices on the temperature range are avoided. The statis-
tical error estimation is crystal clear. One directly observes
scaling corrections by increasing L1 and L2.

Should TL1;L2 be obtained from �L;CG or from �L;SG?
There is a consensus on the divergence of �CG at Tc, while
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FIG. 1 (color online). Comparison of heat bath vs heat bath
plus overrelaxation evolution of �SG�~0� [�SG� ~kmin� in the inset]
from a hot start (EMCS: either 1 heat bath step followed by 20
overrelaxation sweeps or 4 heat bath sweeps). Points in the plot
are the average over 2500 samples of 15 000 successive EMCS.

TABLE I. Details of simulation. For each lattice size, we give
the studied temperatures, the number of simulated samples (in
the same order), and the number of elementary Monte Carlo
steps per sample. In each sample we took 105 measurements,
excepting for L � 32 (20 000 measurements).

L 4 6 8 12 16 24 32

T 0.15 0.15 0.15 0.150 0.150 0.146 0.145
0.16 0.16 0.155 0.155 0.156 0.150 0.147

0.160 0.160 0.160 0.155 0.150
Nsamples (� 103) 2 4 2 3 2.5 2 1

2 6 2 2.4 2.5 1.3 1
2 3 2 2 2

EMCS� 105 1 1 1 2 3 16 40
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that of �SG is controversial [14,15]. Moreover, �L;CG suf-
fers smaller scaling corrections (Fig. 4). So, the results in
Table II were obtained with �L;CG. As for �L;SG, we treat it
here as an observable scaling as L�. Some groups [15–17]
expect � � 1, while others [13,14] believe that � � 0.

Several features are salient in Table II. (i) Once we
neglect L � 4, the L evolution of our estimates is mono-
tonic with increasing L1 and L2 (we agree with
Refs. [14,15] within their L window). (ii) The 1=� from
@T�SG and @T�CG is compatible for L 	 12. (iii) When
L1 and L2 increases, 1=� systematically decreases
(in a Kosterlitz-Thouless scenario it tends to zero).
(iv) Exponent 	SG=� stabilizes for L 	 12 in a typical
D � 3 value [4], hence:

 �SG / �
1:93
0:02
CG : (8)

The scenario of Refs. [13,14], where �CG diverges at Tc,
while �SG (and then �SG) does not, becomes untenable.

At criticality (Table II), �SG scales as L0:9 rather than L1,
immediately suggesting the presence of logarithmic cor-
rections to scaling. Without analytical guidance, the de-
tailed numerical study of logarithmic scaling corrections
[24] is out of reach. Thus, we borrow the leading scaling
corrections from the D � 2 XY model [26] (f� is a smooth
scaling function, while A is a scaling amplitude):

 

�L;SG

L
� f���L;CG=L�

�
1�

A
logL

� . . .
�
: (9)

Indeed (see Fig. 2), Eq. (9) accounts for the L0:9 scaling
(A � 1:3, roughly 4 times that of the 2D-XY model [26]).
One also expects [26] multiplicative logarithms in Eq. (8).
Note, however, that Eq. (9) works in a limited range of L
for any system barely above its lower critical dimension
since it is the !! 0 limit of the standard leading correc-
tion to scaling, L�! [5] (e.g. the 2� 
 expansion [27]
yields! � 
 for the Heisenberg ferromagnet, whose lower
critical dimension is two).

We now study �SG=L as a function of temperature
(Fig. 3). If we do not correct for scaling corrections

(Fig. 3, top), indeed all crossings are in the rather large
range Tc � 0:16�2� [13,15]. However, we observe a net
shift of the crossings to lower T when the system sizes
grow, (for L � 24 and L � 32 a crossing is not found on
the simulated T range). Yet, in Fig. 3, bottom, dividing out
the logarithm scaling corrections in Eq. (9), the curves for
the largest systems merge around T � 0:146, as expected
for a Kosterlitz-Thouless transition (see, e.g., Ref. [2]).

For the sake of completeness, let us consider our data for
�L;SG under the spin-chirality decoupling assumption. In
this scenario, �1;SG diverges at T � 0, as �1;SG � A=T�

�

(�� � 2:2, according to [14]). FSS [5] predicts that
�L;SG=L is a smooth function of L=�1;SG. Take now,
from Fig. 3, top, the temperature where �L;SG=L reaches
(say) 0.44 for L � 24 and L � 32, namely, T24 � 0:1508

TABLE II. Critical exponents from Eq. (7) (TL1 ;L2 from
�kL;CG). The O were: �SG (�: �SG � L

�), @T�L=L (1=�), and
� (	=�). The L1 � 24, L2 � 32 crossing is unclear (Fig. 4), so
we quote results at TL1;L2 � 0:146 (A) and 0.145 (B).

L1 L2 � 1=�SG 1=�CG 	SG=�SG 	CG=�CG

4 8 1.047(5) 1.278(10) 1.077(20) 2.117(7) 1.061(10)
6 12 1.057(3) 1.223(10) 0.761(12) 2.056(5) 0.628(11)
8 16 1.013(4) 0.989(10) 0.722(12) 2.008(8) 0.738(18)

12 24 0.939(4) 0.71(17) 0.66(11) 1.954(9) 0.925(22)
16 24 0.917(5) 0.68(11) 0.67(12) 1.943(15) 1.02(4)
16 32 0.908(5) 0.72(20) 0.73(11) 1.945(13) 1.130(29)
24 32A 0.88(2) 0.60(10) 0.64(12) 1.93(2) 1.26(7)
24 32B 0.91(2) 0.56(12) 0.51(13) 1.96(4) 1.36(11)
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FIG. 2 (color online). Top: For our largest systems �SG scales
as L0:9, using �CG=L as scaling variable. Bottom: The results in
the upper part may be interpreted as the logarithmic corrections
to scaling in Eq. (9), particularly for L > 12.

 

0.42

0.44

0.46

0.48

ξ SG
 / L

L=8
L=12
L=16
L=24
L=32

0.144 0.146 0.148 0.15 0.152 0.154
T

0.28

0.3

0.32

0.34

(ξ
SG

 / L
) 

/ (
1 

+
 1

.3
 / 

L
og

 L
)

FIG. 3 (color online). Top: �SG in units of L, versus T, for
several lattice sizes. Lines join data obtained from a single
simulation [25] (all simulations independent). For the sake of
clarity we only represent data for L 	 8. Bottom: as top,
correcting the suspected logarithmic corrections, Eq. (9).
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and T32 � 0:1474. In other words, �1;SG increases a factor
32=24 � 1:33, while the temperature merely decreases
by 2%. Matching this with an algebraic divergence at T �
0, the nonsensical result �� � 12 is obtained.

Consider now �kCG=L, shown in Fig. 4. Although less
than for �SG, the crossings shift to lower T for larger L. For
L � 8, 12 and 16 we resolve a crossing at T � 0:155. For
L 	 16 the curves merge at T � 0:147, suggesting again a
Kosterlitz-Thouless scaling, but with smaller scaling cor-
rections. The L � 32 data at low T are compatible with,
but above, the L � 24 data. We suspect a statistical fluc-
tuation (the three L � 32 simulations are independent), but
a crossing may not be discarded.

In summary, we have shown that the Heisenberg spin
glass undergoes a spin-glass transition in D � 3, by means
of Monte Carlo simulation and FSS analysis [2,4,5]. We
have adapted a lattice gauge theory algorithm [21], that
thermalizes L � 32 systems, well beyond any previous
spin-glass simulation in D � 3. Furthermore, a large num-
ber of samples were studied in Marenostrum. For studies in
the low temperature phase, we suggest combining our
algorithm with parallel tempering. The large range of
system sizes studied allows us to conclude that, at critical-
ity, the spin-glass susceptibility scales with the chiral
correlation length, Eq. (8). Therefore, a single phase tran-
sition is present in this problem: spin-chirality decoupling
is ruled out. We observe logarithmic corrections to scaling,
explaining why previous investigations [9–17] were incon-
clusive. Our results are compatible with Kosterlitz-
Thouless scaling, but they are typical as well of a system
with a lower critical dimension barely smaller than 3.
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FIG. 4 (color online). Parallel chiral correlation length in units
of L, as a function of T, for several lattice sizes.
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