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Based on a first-principles approach, we present scaling rules for the band gaps of graphene nano-
ribbons (GNRs) as a function of their widths. The GNRs considered have either armchair or zigzag shaped
edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to have band gaps.
This differs from the results of simple tight-binding calculations or solutions of the Dirac’s equation based
on them. Our ab initio calculations show that the origin of energy gaps for GNRs with armchair shaped
edges arises from both quantum confinement and the crucial effect of the edges. For GNRs with zigzag
shaped edges, gaps appear because of a staggered sublattice potential on the hexagonal lattice due to edge
magnetization. The rich gap structure for ribbons with armchair shaped edges is further obtained
analytically including edge effects. These results reproduce our ab initio calculation results very well.
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The electronic structure of nanoscale carbon materials
such as fullerenes and carbon nanotubes has been the
subject of intensive research during the past two decades
[1] because of fundamental scientific interest in nanoma-
terials and because of their versatile electronic properties
that are expected to be important for future nanoelectronics
[2,3]. Among the carbon nanostructures, a simple variation
of graphene, ribbons with nanometer sized widths, has
been studied extensively [4–15]. Because of recent
progress in preparing single graphite layers on conven-
tional device setups, the graphene nanoribbons (GNRs)
with varying widths can be realized either by cutting [16]
mechanically exfoliated graphenes [17,18], or by pattern-
ing epitaxially grown graphenes [19,20].

Since GNRs are just geometrically terminated single
graphite layers, their electronic structures have been mod-
eled by imposing appropriate boundary conditions on
Schrödinger’s equation with simple tight-binding (TB)
approximations based on �-states of carbon [4–7] or on
a two-dimensional free massless particle Dirac’s equation
with an effective speed of light (�106 m=s) [8–10]. Within
these models, it is predicted that GNRs with armchair
shaped edges can be either metallic or semiconducting
depending on their widths [4–10], and that GNRs with
zigzag shaped edges are metallic with peculiar edge states
on both sides of the ribbon regardless of its widths [4–14].

Although the aformentioned models are known to de-
scribe the low energy properties of graphene very well [17–
22], a careful consideration of edge effects in nanometer
sized ribbons are required to determine their band gaps
because, unlike the situation in graphene, the bonding
characteristics between atoms change abruptly at the edges
[7,15]. Moreover, the spin degree of freedom is also im-
portant because the GNRs with zigzag shaped edges have
narrow-band edge states at the Fermi energy (EF) implying
possible magnetization at the edges [4,11–13]. Motivated
by the recent experimental progress in this area, we have

carried out first-principles calculation and theoretical
analysis to explore the relation between the band gap and
the geometries of GNRs.

In this Letter, we show that GNRs with hydrogen passi-
vated armchair or zigzag shaped edges both always have
nonzero and direct band gaps. The origins of the band gaps
for the different types of homogenous edges vary. The band
gaps of GNRs with armchair shaped edges originate from
quantum confinement, and edge effects play a crucial role.
For GNRs with zigzag shaped edges, the band gaps arise
from a staggered sublattice potential due to spin ordered
states at the edges [4,11–13]. Although the ribbon widths
and energy band gaps of the GNRs are related to each other
primarily in inverse proportion, there is a rich structure in
the ratio of the proportionalities as in the behavior of
carbon nanotubes [1]. For GNRs with armchair edges,
analytic scaling rules for the size of the band gaps are
obtained as a function of width including the effect of
the edges and give a good agreement with our first-
principles calculations.

Our electronic structure calculation employs the first-
principles self-consistent pseudopotential method [23] us-
ing the local (spin) density approximation [L(S)DA]
[23,24]. An energy cutoff (for a real space mesh size) of
400 Ry is employed and a double-� plus polarization basis
set [23] is used for the localized basis orbitals to deal with
the many atoms in a unit cell of the GNRs of various
widths. We obtained the electron density by integrating
the density matrix with a Fermi-Dirac distribution [23,25].
The geometry for each GNR studied is fully relaxed until
the force on each of the atoms is less than 16 pN. A k-point
sampling of 32 (96) k points that are uniformly positioned
along the 1D Brillouin zone is employed for GNRs with
armchair (zigzag) shaped edges. We have tested the change
of gap size by increasing the vacuum between edges from
20 to 40 Å and between planes from 16 to 25 Å and found
no changes.
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Following previous convention [4–15], the GNRs with
armchair shaped edges on both sides are classified by the
number of dimer lines (Na) across the ribbon width as
shown in Fig. 1(a). Likewise, ribbons with zigzag shaped
edges on both sides are classified by the number of the
zigzag chains (Nz) across the ribbon width [Fig. 1(b)]. We
refer to a GNR with Na dimer lines as a Na-AGNR and a
GNR with Nz zigzag chains as a Nz-ZGNR.

Our calculations show that the Na-AGNRs are semi-
conductors with energy gaps which decrease as a function
of increasing ribbon widths (wa). The variations in energy
gap however exhibit three distinct family behaviors
[Fig. 2]. Moreover, the energy gaps obtained by a simple
TB model are quite different from those by first-principles
calculations. The TB results using a constant nearest neigh-
bor hopping integral, t � 2:7 eV [22] between �-electrons
are summarized as function of width in Fig. 2(a). It shows
that a Na-AGNR is metallic if Na � 3p� 2 (where p is a
positive integer) or otherwise, it is semiconducting, in
agreement with previous calculations [4–10]. The gap of
a Na-AGNR (�Na) is inversely proportional to its width,

separated into basically two groups with a hierarchy of gap
size given by �3p * �3p�1 >�3p�2�� 0� for all p’s. For
the first-principles calculations, however, there are no me-
tallic nanoribbons. The gaps as a function of ribbon width
are now well separated into three different categories (or
family structures) as shown in Fig. 2(b). Moreover, the
gap size hierarchy is also changed to �3p�1 > �3p >
�3p�2�� 0�. For example, in the first-principles calcula-
tion for p � 13, the lowest energy gap is �38 � 45 meV
and �40 ��39 � 68 meV, all of which are quite larger
values compared to those (0 and �2 meV, respectively)
obtained from TB approximations. The first-principles
band structures of Na-AGNRs are shown in Fig. 2(c) for
Na � 12, 13, and 14. They exhibit direct band gaps at
kda � 0 for all cases.

A determining factor in the semiconducting behavior of
Na-AGNR is quantum confinement which can be charac-
terized by �Na � w

�1
a [4–10]. In addition, as will be dis-

cussed below, the edge effects play a crucial role and force
the (3p� 2)-AGNRs (predicted to be metallic by TB
model) to be semiconductors. The edge carbon atoms of
our AGNRs are passivated by hydrogen atoms (by some
foreign atoms or molecules in general) so that the � bonds
between hydrogen and carbon and the on-site energies of
the carbons at the edges would be different from those in
the middle of the AGNRs. The bonding distances between
carbon atoms at the edges are also expected to change
accordingly. Such effects have been observed in large
aromatic molecules, e.g., ovalene (C32H14) [26]. In
Fig. 3(a), we show that the bond lengths parallel to dimer
lines at edges [a1 and aNa for Na-AGNR in Fig. 1(a)] are
shortened by 3:3� 3:5% for the 12-, 13-, and 14-AGNR as
compared to those in the middle of the ribbon. From the
analytic expressions for TB matrix elements between car-
bon atoms in Ref. [27], a 3.5% decrease in interatomic
distance from 1.422 Å would induce a 12% increase in the
hopping integral between �-orbitals.

To see the consequence of such effects more clearly, we
introduce a lattice model [Fig. 3(b)] which is equivalent to
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FIG. 1 (color online). (a) Schematic of a 11-AGNR. The
empty circles denote hydrogen atoms passivating the edge
carbon atoms, and the black and gray rectangles represent atomic
sites belonging to different sublattice in the graphene structure.
The 1D unit cell distance and ribbon width are represented by da
and wa, respectively. The carbon-carbon distances on the nth
dimer line is denoted by an. (b) Schematic of a 6-ZGNR. The
empty circles and rectangles follow the same convention de-
scribed in (a). The 1D unit cell distance and the ribbon width are
denoted by dz and wz, respectively.
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FIG. 2 (color online). The variation of band gaps of
Na-AGNRs as a function of width (wa) obtained (a) from TB
calculations with t � 2:70 �eV� and (b) from first-principles
calculations (symbols). The solid lines in (b) are from Eq. (1).
(c) First-principles band structures of Na-AGNRs with Na � 12,
13, and 14, respectively.
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FIG. 3 (color online). (a) The ratio of the calculated change in
the carbon-carbon distance (�an) [see Fig. 1(a)] to the carbon-
carbon distance in the middle of the Na-AGNRs, i.e., �an �
100� an�ac

ac
, where ac � a6 � a7 � 1:424 �A for Na � 12,

ac � a7 � 1:422 �A for Na � 13, and ac � a7 � a8 �
1:423 �A for Na � 14, respectively. (b) Topologically equivalent
structure to the Na-AGNR shown in Fig. 1(a). For the special
case of k � 0, a lattice with periodic ladders (left) can be folded
into a two-leg ladder with Na rungs (right).
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the AGNRs within the TB approximation [4–7]. The set of
eigenvalues of a brick type lattice shown in Fig. 3(b)
at kda � 0 is further equivalent to that of a two-
leg ladder system with Na rungs [4–7]. The Hamiltonian
of this simpler model can be written as H �
PNa
n�1

P2
��1 "�;na

y
�;na�;n �

PNa
n�1 t

?
n �a

y
1;na2;n � H:c:� �

PNa�1
n�1

P2
��1 t

jj
n;n�1�a

y
�;na�;n�1 � H:c:�, where fn;�g de-

note a site, "�;n site energies, tjjn;n�1 and t?n the nearest
neighbor hopping integrals within each leg and between
the legs, respectively, and a�;n the annihilation operator of
�-electrons on the nth site of the �th leg. As discussed
above and shown in Fig. 3(a), t?n and "�;n at the edges
would differ from those in the middle of GNRs. Hence,
considering the simplest but essential variation from the
exact solvable model to approximate the realistic situ-
ations, we assume that t?1 � t?Na � �1� ��t and t?n � t

for n � 2; . . . ; Na � 1, and tjjn;n�1 � t for all n’s. The site
energies are set at "�;n � "0 for n � 1 and Na and 0
otherwise regardless of �. This model Hamiltonian is
solved pertubatively and the resulting energy gaps to the
first order in � and "0 are as follows,
 

�3p ’ �0
3p �

8�t
3p� 1

sin2 p�
3p� 1

;

�3p�1 ’ �0
3p�1 �

8�t
3p� 2

sin2 �p� 1��
3p� 2

;

�3p�2 ’ �0
3p�2 �

2j�jt
p� 1

;

(1)

where �0
3p, �0

3p�1, and �0
3p�2 are the gaps of the ideally

terminated ribbon when � � "0 � 0. They are given by
t	4 cos p�

3p�1� 2
, t	2� 4 cos�p�1��
3p�2 
 and 0, respectively.

The zeroth-order gaps are identical to the values obtained
from numerical calculations in Fig. 2(a) [4–7]. With
t � 2:7 �eV� [22] and � � 0:12, the calculated gaps ob-
tained using Eq. (1) are in good agreement with our LDA
results [Fig. 2(b)]. This implies that the 12% increase of the
hopping integrals between carbon atoms at the edges opens
the gaps of the (3p� 2)-AGNRs and decreases (increases)
the gaps of 3p-AGNRs [(3p� 1)-AGNRs]. This analysis
provides the physical explanation of the changes in the gap
hierarchy discussed before. We note that there is no con-
tribution from the variation in the site energies ("0) at the
edges to first order.

Next, we find that nanoribbons with zigzag shaped edges
also have direct band gaps which decrease with increasing
width (wz). The eigenstates of the ZGNRs near EF, without
considering spins, have a peculiar edge-state structure. As
noted earlier within the tight-binding picture [4], there are
two edge states decaying into the center of the ZGNR with
a decay profile depending on their momentum as �e��kr,
where �k � �

2��
3
p
dz

lnj2 coskdz2 j [ 2�
3 � kdz � �, dz � unit

cell length shown in Fig. 1(b)]. Our first-principles calcu-
lation also predicts a set of doubly degenerate flat edge-

state bands at EF when not considering spins (not shown
here). Since the edge-states around EF form flat bands,
they give rise to a very large density of states at EF.
Thus, infinitesimally small on-site repulsions could make
the ZGNRs magnetic [4], unlike the case with two-
dimensional graphene which has a zero density of states
at EF. As pointed out in a TB study earlier [4] and later
confirmed by first-principles studies [11–13], our LSDA
calculation also shows that the ground state of ZGNRs with
hydrogen passivated zigzag edges indeed have finite mag-
netic moments on each edge with negligible change in
atomic structure [11–14].

Upon inclusion of the spin degrees of freedom within
LSDA, the ZGNR are predicted to have a magnetic insu-
lating ground state with ferromagnetic ordering at each
zigzag edge and antiparallel spin orientation between the
two edges. The spatial spin distributions of the ground state
in the case of 12-ZGNR is displayed in Fig. 4(a). The small
spin-orbit coupling [28] in carbon atoms is neglected in the
present study, and we label one spin orientation as �-spin
(red) and the opposite as �-spin (blue) in Fig. 4(a). The
total energy difference per edge atom between nonspin-
polarized and spin-polarized edge states increases from
20 meV (Nz � 8) to 24 meV (Nz � 16). These energy
differences are further stabilized by an antiferromagnetic
coupling between the two edges. The total energy differ-
ence between ferromagnetic and antiferromagnetic cou-
plings between edges, however, decreases as Nz increases
and eventually becomes negligible if the width is signifi-
cantly larger than the decay length of the spin-polarized
edge states [12]. The ferromagnetic-antiferromagnetic en-
ergy differences per unit cell are 4.0, 1.8, and 0.4 meV for
the 8-, 16-, and 32-ZGNR, respectively. Our LSDA results
agree with previous studies [4,11,12] and are consistent
with a theorem based on the Hubbard Hamiltonian on a
bipartite lattice [29]. Though infinite range spontaneous
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band gap and the energy splitting at kdz � �, respectively.
(c) The variation of �0
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magnetic ordering in a one-dimensional Heisenberg model
is ruled out [30], spin orderings in nanoscale system are
realizable in practice [31–34] at finite temperature assisted
by the enhanced anisotropy on substrates [33,34].

The energy gaps in ZGNRs originate from the staggered
sublattice potentials resulting from the magnetic ordering,
which introduce band gaps for electrons on a honeycomb
hexagonal lattice [35]. This is realized because the oppo-
site spin states on opposite edges occupy different sublat-
tices, respectively, [black rectangles on the left side and
gray ones on the right belong to different sublattice, re-
spectively, in Fig. 1(b)]. So, the ZGNRs can be considered
as the magnetic analog of a single BN sheet because the
former has a band gap which originates from the exchange
potential difference on the two sublattices while the
band gap of the latter is from the ionic potential difference
between boron and nitrogen atoms located on the
different sublattices [36]. The Hamiltonian (H ) and
Bloch wave functions ( nk����) of the ground states satisfy
	H ;TM
 � 0 and TM nk� �  nk�, where T is the
time-reversal symmetry operator and M a mirror symme-
try operator interchanging sites on opposite sides. Hence,
�- and �-spin states are degenerate in all bands and have
the same gap as shown in Fig. 4(b).

Since the strength of the staggered potentials in the
middle of the ribbon decreases as the width increases, the
LSDA band gaps of ZGNRs are inversely proportional to
the width. The calculated energy gaps (in eV) can be fit by
�0
z�wz� � 9:33=�wz � 15:0� with wz in angstroms when

Nz 
 8 as shown in Fig. 4(c). It is also shown that the
energy splitting at ka � � [�1

z in Fig. 4(b)] converges to
0.53 eV (32-ZGNR) from 0.51 eV (8-ZGNR).

In summary, we have shown that graphene nanoribbons
with homogeneous armchair or zigzag shaped edges all
have energy gaps which decrease as the widths of the
system increase [37]. The role of the edges are crucial
for determining the values and scaling rule for the band
gaps.
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