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Based on the Keldysh formalism, we derive an effective Boltzmann equation for a quasiparticle
constrained within a particular Fermi surface in an interacting Fermi liquid. This provides a many-body
derivation of Berry curvatures in electron dynamics with spin-orbit coupling, which has received much
attention in recent years in noninteracting models. As is well known, the Berry curvature in momentum
space modifies naı̈ve band dynamics via an ‘‘artificial magnetic field’’ in momentum space. Our Fermi
liquid formulation completes the reinvention of modified band dynamics by introducing in addition an
artificial electric field, related to Berry curvature in frequency and momentum space. We show explicitly
how the artificial electric field affects the renormalization factor and transverse conductivity of interacting
U�1� Fermi liquids with nondegenerate bands.
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Recent experimental developments in spintronics, nota-
bly several measurements of the evidently intrinsic anoma-
lous Hall effect in ferromagnetic metals [1] and
observations of the spin Hall effect in semiconductors
[2,3], have highlighted the importance of intrinsic spin-
orbit effects in conductors. Theoretically, there has been a
renewal of interest in the fundamental dynamics of Bloch
electrons in periodic solids taking into account spin-orbit
interactions, following ideas pioneered by Karplus and
Luttinger [4] and elegantly formulated by Sundaram and
Niu [5]. In particular, in a noninteracting band picture, the
low-energy Hilbert space is restricted to states in the
conduction band containing the Fermi surface at each
quasimomentum k along this surface. This local constraint,
like other local constraints in physics [6], generates a
gauge symmetry in momentum space, corresponding to
the freedom to redefine Bloch functions by a momentum-
dependent phase factor [or SU�2� matrix in the case of
twofold degenerate bands]. Consequently, a wave packet
analysis of noninteracting Bloch states shows that this
structure induces an artificial magnetic field (AMF), which
contributes a Lorentz force in k space, mathematically
analogous to the action of the real magnetic field b in
real R space [5]. The AMF B� and its associated magnetic
gauge field A� are defined from the periodic part of the
Bloch wave function of conduction bands ju�i: B�;i �

i�ijm@kjA�;m and A�;i � hu�j@kiu�i. The fundamental
framework of Fermi liquid theory suggests that these con-
clusions persist in realistic metals, in which the Coulomb
interactions between electrons are not weak. Haldane has
argued that this is indeed the case for quasiparticles at the
Fermi surface, with ju�i replaced by the eigenvector of the
inverse of the Hermitian part of the retarded (advanced)
Green function [7]. In this Letter, we identify an additional
manifestation of this gauge structure unique to interacting
Fermi liquids. In particular, because the renormalized ei-
genstates thus introduced are, in general, dependent on

frequency !, it is natural to introduce an artificial electric
field (AEF) and electrostatic field as E�;i � i�@!A�;i �

@kiA�;0� and A�;0 � hu�j@!u�i, respectively. These
quantities vanish in the absence of interactions, since the
! dependence of the quasiparticle states arises from that of
the (collisional) self-energy.

In the following, we present explicit calculations that
demonstrate that this AEF indeed has physical effects. In
addition, our Keldysh formulation provides a many-body
derivation of an effective kinetic equation embodying the
entire emergent gauge structure and a systematic procedure
for actually carrying out the projection into the low-energy
band. We concentrate on metallic materials lacking either
inversion or time-reversal symmetry, in which case the
bands are nondegenerate and the gauge structure is U�1�.
For such a U�1� Fermi liquid (FL), we demonstrate that
both AMF and AEF, which are estimated ‘‘on-shell’’ [see
Eq. (12) in combination with Eqs. (7) and (9) for their more
precise definitions], in fact enter into the effective equation
of motion (EOM) for a quasiparticle:
 

dR
dT
� v� �B� � E� � v� �

dk
dT

;

dk
dT
� �e� b�

dR
dT

:
(1)

E� thus provides another source of the Lorentz force in k
space, in addition to the contribution of the B� field
identified in Ref. [5]. It therefore modifies the transverse
current carried by a quasiparticle and, hence, the intrinsic
anomalous Hall conductivity of a conducting ferromagnet
to

 �jk � �jkl
e2

@

X
�

Z dk

�2��d
�B� � E� � v��ln�; (2)

where the sum � is over bands, and n� is the distribution
function. In particular, Eq. (2) can also be proven to be
consistent with the many-body formulation of the trans-
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verse conductivity [7,8], more directly by using Ward
identities which relate the current vertex correction to
single quasiparticle Green functions [9]. As another physi-
cal consequence of these artificial electromagnetic fields
(AEF or AMF), we will also show that the linear response
of the momentum-resolved single-particle density of states
to applied electromagnetic fields is characterized by these
artificial fields. Specifically, in the presence of e and b, the
quasiparticle renormalization factor of a U�1� FL acquires
the following topological corrections:

 Z0 � 1� 1
2�B� � b� E� � e�: (3)

This, in principle, makes it possible to detect the distribu-
tion of these ‘‘artificial’’ fields in the momentum space,
using angle resolved photoemission spectroscopy
(ARPES) experiments.

We now turn to the derivation of the above results and
the gauge-invariant effective kinetic equation. We begin
with a quite general semimicroscopic model in which the
electronic spectrum is described by a k � p-type expansion
about some (arbitrary) point in the Brillouin zone. One
may keep as many bands as are deemed close enough in
energy to be relevant to the physics, and our arguments do
not depend upon the order in the expansion in k. Familiar
examples would be the multiband Luttinger models for
commonly studied semiconductors, in which the natural
expansion is about the � point. In principle, one should
choose the expansion point so that there are no low-energy
band crossings intervening between it and the Fermi sur-
face, and there could be difficulties in treating open Fermi
surfaces with the periodic structure of the quasimomen-
tum. However, while a fully microscopic treatment would
be desirable, our approach is nevertheless quite general,
and, moreover, we speculate that our final results naturally
extend and apply to arbitrary U�1� FLs.

The advantage of this formulation is that we can Fourier
transform in the usual way to a continuous real space
coordinate r, i.e., k! �irr. The noninteracting
Hamiltonian is thereby expressed in terms of the fermionic
‘‘envelope fields’’  ��r�: H 0 �

P
�;�0

R
dr y��r��

	Ĥ0��irr; r�
��0 �0 �r�, where the band index ��0� runs
from 1 to Nb. Specific information about lattice, orbital,
and spin-orbit couplings is encoded into the matrix struc-
ture of 	Ĥ0
. We will employ a natural form of the inter-
action, H 1 �

PRR
 y�1�r1� 

y
�2�r2�V�1�2�02�

0
1
�r1; r2� �

 �02�r2� �01�r1�, though the form of our results does not
depend in detail upon this.

Bearing in mind this Hamiltonian H �H 0 �H 1, we
can proceed with the Keldysh formalism, beginning with
an analysis of the spectral function 	Â�r; tjr0; t0�
��j�0� �
hf ��r; t�;  

y
�0 �r

0; t0�g�i. It obeys [10,11]

 	Ĝ�1
0 � �̂HF

� �̂; Â
�;� � 	L̂; Â
�;� � 	�̂;ReĜ
�;� ! 0̂:

(4)

Here the product � denotes the convolution with respect to

time t, space r, and band index �, �B̂ � Ĉ��1j10� �R
d�1 B̂�1j�1� � Ĉ��1j10�. The commutator here is defined by

using this convolution: 	B̂; Ĉ
�;� � B̂ � Ĉ� Ĉ � B̂. The
bare Green function is as usual defined by Ĝ�1

0 �1j1
0��

	i@t1 1̂�Ĥ0��irr1
;r1�
�1�01

��t1� t01���r1�r01�. �̂HF
�1j10�

and �̂�1j10� are the Hartree-Fock part (temporally instan-
taneous) and the Hermitian part, respectively, of the colli-
sional self-energy (noninstantaneous), while �̂�1j10� is the
anti-Hermitian part of the collisional self-energy. In a FL,
the decay rate represented by the 	�̂;ReĜ
�;� in Eq. (4) is
expected to be O��!���2; T2�, due to the phase-space
constraints inherent to FL theory. Because we focus on low
temperature physics [and indeed require the self-energy
only to O�!���, the order that determines the nonvan-
ishing electric field at the Fermi surface [12]], we hence-
forth ignore this lifetime effect, replacing the right-hand
side in Eq. (4) as indicated.

Even this dissipationless Keldysh equation is still non-
trivial and involved, due to the presence of the band index,
whose effect is the central issue of this work. In the
following, we will argue a general method of projecting
out the irrelevant band indices and how to obtain the
reduced Keldysh (kinetic) equation only for the relevant
bands.

The first step is to apply the Wigner transformation, so
that frequency and momentum (! and q) are introduced by
the Fourier transformation for the relative coordinate in
space and time �t; r� � �t1 � t10 ; r1 � r10 �. Namely,
B̂�!; q;T; R� �

R
drdtB̂�r1; t1jr10 ; t10 �e

�iqr�i!t, where the
center of mass coordinate in space and time X � �T; R� �
	�t1 � t10 �=2; �r1 � r10 �=2
 parametrize phase space in
combination with Q � �!; q�. Then, following Ref. [10],
the Keldysh equation in terms of Q and X becomes

 

�	L̂; Â
� �
i
2
	@XjL̂; @Qj

Â
� �
1

8
�	@Xj@XkL̂; @Qj

@Qk
Â
�

� fXk $ Qkg� � fXj $ Qjg: (5)

The j and k summation over 0 to d are implicit from now
on (d is the spatial dimension of our system). The (anti)-
commutator here is defined in the sense of the product only
with respect to band indices. The nonlocal correlation
effect which was previously encoded in the space-time
convolution is now partially taken into account via the
so-called gradient expansion in @Q@X � �@!@T �
@qj@Rj . The expansion is justified close to equilibrium,
since all quantities are independent of X in equilibrium.
We carry out the gradient expansion to 2nd order, at which
E and B appear in the kinetic equation [see, for example,
Eq. (14)].

The Wigner-transformed Lagrangian L̂, when diagonal-
ized, L̂d � Ûy � L̂ � Û, defines a renormalized energy dis-
persion by its eigenvalue and renormalized Bloch functions
by its eigenbasis. Namely, in this new basis, Eq. (5) at equi-
librium can be satisfied by those spectral functions hav-
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ing no off-diagonal components. The diagonal elements of
Â � Ûy � Â � Û are verified a posteriori to become a delta
function whose argument is the eigenvalue of L̂

 A� � A�� � ��Ld;�� � ��!� E��!; q��; (6)

where E��!; q� is the �th eigenenergy of Ĥ0 � �̂HF
� �̂.

Out of equilibrium, the off-diagonal element also ac-
quires small but finite weight, which we will take into
account in a systematic way below. In this new basis, the
simple derivatives in Eq. (5) are replaced by covariant
ones:
 

Ûy � �@Qj
L̂� � Û � @Qj

L̂d � ÂQj
� L̂d � L̂d � ÂQj

;

Ûy � �@XjÂ� � Û � @XjÂ� ÂXj � Â� Â � ÂXj ;

Ûy � 	L̂; Â
� � Û � 	L̂d; Â
�; ÂQj
� Ûy@Qj

Û;

(7)

Nb times Nb matrices ÂQj
and ÂXj are the renormalized

gauge field, through which we will define AEF or AMF
later [see Eqs. (9) and (12)]. As the off-diagonal compo-
nents of the spectral function are expected to be small in
this new basis, they may be eliminated in favor of the
diagonal components. Specifically, this occurs because
the Keldysh equation for the A�� (� � �) contains the
term ���A��, with the direct band gap ��� � E� � E� as
the sole nonvanishing term at 0th order in the gradient
expansion—forcing A�� to vanish in equilibrium.
Accordingly, A�� is of at most 1st order in the gradient
expansion, and it can be solved for in terms of the diagonal
elements A� by iteration. By contrast, the diagonal com-
ponents of the Keldysh equation appear all at first and
higher order in the gradient expansion. Substituting the
iterative solution for A�� into these diagonal equations,
we can obtain a set of Nb equations for the diagonal parts
A� � A�� alone, to the desired (2nd) order in gradients.

Finally, we focus on a specific band ‘‘�’’ which contains
a Fermi surface. In the low frequency region (j!� E�j ’
j!��j � min�j���j), the diagonal elements of the
spectral functions for the other bands are expected to
have negligible weight. This is because in equilibrium, in
the noninteracting limit, Ak�i is sharply peaked at an
energy separated from the chemical potential by the direct
band gap. With interactions, or out of equilibrium, there
may be some incoherent weight around ! ’ �, but it is
expected to be extremely small. Thus, the other bands can
also be eliminated, so that we obtain independent Keldysh
equations for the diagonal spectral functions.

Following this prescription, we obtain the differential
equation L�1��A�� �L�2��A�� � 0, with [9]
 

L�1��A�� � 	@Xj�Ld;� �M��
�@Qj
A�� � fXj $ Qjg;

L�2��A�� �
1
4�@XjLd;���@Qj

��
XkQk
�A�

� �@XkLd;���
�
QkXj
�@Qj

A�� � fXj $ Qjg

� fXk $ Qkg � fXk; Xj $ Qk;Qjg: (8)

Here the Berry curvatures associated with the �th band,
i.e., ��

QjXk
and its 3 counterparts, are defined in terms of the

renormalized gauge fields introduced in Eq. (7), e.g.,

 ��
QjXk
� �i

X
���

	ÂQj

��	ÂXk
�� � c:c: (9)

M� in Eq. (8) denotes an energy correction of the 1st order
gradient expansion: M� �

i
2

Pd
j�0

P
���	ÂXj
�� �

�Ld;� � Ld;�� � 	ÂQj

�� � c:c: The Zeeman coupling en-

ergy between orbital momentum and external magnetic
field, which was previously found in the noninteracting
case [5], is encoded into the

Pd
j�1 terms in this energy

correction. On the other hand, the temporal term, i.e., j �
0, describes a coupling of the electric dipole moment of
quasiparticles to the external electric field, which is unique
to an interacting FL [9].

We can now extract the low-energy behavior of the
spectral function. The renormalized energy dispersion of
the �th band ��q;X� is determined from

 Ld;��M����E���;q;X��M���;q;X��0: (10)

Indeed, neglecting L�2�, the form A� � ��Ld;� �M��
satisfies the Keldysh equation to the 2nd order in the
gradient expansion. Therefore, without L�2�, the spectral
function is sharply peaked at ! � �, with a weight given
by the conventional ‘‘renormalization factor’’ Z �
	@!�Ld;� �M��


�1
j!��. However, due to the presence of

L�2�, which contains terms proportional to A� rather than
its derivative, the solution up to the 2nd order of the
gradient expansion acquires an additional renormalization
factor Z0 � 1� 1

2 ��
�
XkQk
�j!��, and

 A� � Z0��Ld;� �M�� � ZZ0��!� ��: (11)

To unmask the meaning of this new term Z0, let us
specialize to the situation where the disequilibrium is
generated by a physical (i.e., external) electromagnetic
gauge field �a0; a�, with corresponding physical electro-
magnetic fields b � r� a, e � rRa0 � @Ta. In this case,
energy �	q; X
 � �0	q� a�X�
 � a0�X�, where �0 is the
(renormalized) band energy in equilibrium. Then, intro-
ducing canonical momentum and frequency k �
q� a�T; R� and !0 � !� a0�R� [13], Eq. (11) becomes
A� � ZZ0��!0 � �0�k��. Correspondingly, the Berry cur-
vature appearing in the additional renormalization factor Z0

is expressed in terms of the following artificial electromag-
netic fields (AEF or AMF) estimated at ! � �:

 ���
kmkn
�j!�� � �mnjB�;j; ���

!kj
�j!�� � E�;j: (12)

Namely, Z0 simply reduces to an inner product between
real electromagnetic fields and these AEF or AMF, as in
Eq. (3). This result indicates a renormalization of the
‘‘angle resolved density of states’’ when both physical
and AEF or AMF are present. A similar modification
(dependent upon B� � b only) was proposed in Ref. [14].
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This theoretical observation leads us to propose the
momentum-resolved detection of AEF or AMF by
ARPES, by observing the modification of the spectral
weight by small applied electromagnetic fields. This is
no doubt quite difficult in practice but demonstrates that
the systematic measurement of the artificial fields is pos-
sible in principle.

We now turn from the spectral function to the quasipar-
ticle dynamics, by deriving the effective Boltzmann equa-
tion for quasiparticles in a U�1� FL. We start with the
observation that the dissipationless Keldysh equation in
Eq. (5) holds also for the lesser Green’s function
g<�1; 10� � ih y�0 �r

0; t0� ��r; t�i under the same assump-
tions [11]. Applying the same unitary transformation as
above, i.e., ĝ< � Ûy � ĝ< � Û, one then obtains exactly the

same reduced Keldysh equation for the ��;�� component
of ĝ< as in Eq. (8). This lesser Green’s function may be
decomposed according to g<� �Q;X� � iA��Q;X�f��Q;X�,
where f��Q;X� is a generalized Fermi distribution [11].
Inserting this into the reduced Keldysh equation thus ob-
tained, we can readily obtain the EOM for f�:

 

0�ZZ0��!���f@Xj�Ld;��M��@Qj
f��@Xk�

�
QkXj

@Qj
f�

�@Qk
��
XkXj

@Qj
f���Xj$Qj�g:

Because of the sharp peak in A� ’ ��!� ��, when inte-
grating this EOM with respect to !, we get an effective
Boltzmann equation for a quasiparticle occupation number
in q-R space; n��q:R; T� � f��q; �:R; T�,

 	1���
T���@Rj���

�
qj���@qj���

�
Rj�

@Tn��	@Rj���@T���

�
�Rj
��@Rk���

�
qkRj
���

TRj
��@qk���

�
RkRj

@qjn��fqj$Rjg:

(13)

Note that, although all of the curvature terms in the above
are now ‘‘on-shell’’ quantities, the partial q, R, and T
derivatives encoded there apply only on their explicit
dependence and do not apply on their arguments of �.

In the presence of external electromagnetic fields, this
effective Boltzmann equation can be substantially simpli-
fied in terms of the canonical momentum introduced
above:
 

0 � @Tn� � 	�e� b� v� b� �e�B0��

� b� ��b� v� �B0��
 � @kn�

� 	v� e�B0� � �b� v� �B0�
 � @Rn�; (14)

where we used abbreviated notations B0� � B� � E� � v
and v � @k� [15]. The partial X derivative of n� was taken
with the canonical momentum k fixed. By equating this
with the continuity equation in phase space, 0 � @Tn� �
�@Tk� � @kn� � �@TR� � @Rn�, we obtain the quasiparticle
equation of motion [Eq. (1)] to the accuracy of the 2nd
order gradient expansion. Furthermore, extracting the con-
served current from the continuity equation in zero exter-
nal field (b � 0), one finds j� �

R
k	v� e�B0�
n�. The

usual solution of the Boltzmann equation in linear response
therefore gives immediately the anomalous Hall conduc-
tivity in Eq. (2).
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