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Kinetic Coefficient for Hard-Sphere Crystal Growth from the Melt
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Using molecular-dynamics simulation, we determine the magnitude and anisotropy of the kinetic
coefficient (u) for the crystal growth from the melt for the hard-sphere system through an analysis of
equilibrium capillary fluctuations in interfacial height. We find oo = 1.44(7), w10 = 1.10(5), and
#1171 = 0.64(3) in units of \/kg/(mT,,), where kg is Boltzmann’s constant, m is the particle mass, and T,
is the melting temperature. These values are shown to be consistent, with some exceptions, with those
obtained in recent simulation results a variety of fcc metals, when expressed in hard-sphere units. This
suggests that the Kinetic coefficient for fcc metals can be roughly estimated from C\/R/(MT,,), where R is
the gas constant, M is the molar mass, and C is a constant that varies with interfacial orientation.
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The kinetic coefficient, u, of a crystal-melt interface is
the constant of proportionality between the growth velocity
(v) and undercooling (AT =T,, — T)

v = uAT, (D

where T, is the melting temperature. Both the magnitude
and orientation dependence (anisotropy) of w are crucial
factors in determining the crystallization rates and growth
morphologies of metals [1]—especially for dendritic
growth [2]. Because the crystal-melt interface lies between
two condensed phases, experimental measurements of u
are difficult [3] (especially for the anisotropy) and exist
only for a few materials, such as P, [4], and Pb [5]. The
lack of experimental data enhances the role of atomistic
simulation, which has been used recently to determine w
for a variety of systems ranging from Lennard-Jones (LJ)
[3,6,7] to close-packed metals [8§—10].

Unlike molecular and covalent network materials, the
growth kinetics of simple monatomic, close-packed crys-
tals (e.g., simple metals) are not believed to be thermally
activated [11]. This view is supported by the results of
Broughton, Gilmer, and Jackson (BGJ) [6], who, in a
molecular-dynamics (MD) simulation of the fcc (100)
interface of a LJ system, found significant crystallization
rates even at very low temperatures where the liquid dif-
fusivity is negligible, contrary to the predictions of the
thermal activation model of Wilson and Frenkel (WF)
[12,13]. Based on their MD results, BGJ modified the
diffusion-limited WF model to create a collision-limited
model in which temperature, not the diffusion constant,
plays a central role in the crystal growth of metals. The
BGJ model has been interpreted to predict a proportion-
ality between w and the interplanar spacing, d,,, for a
given interfacial orientation (/, m, n) [14]. Thus, based on
relative interplanar spacings, the BGJ model would predict
that 17 > t190 > M110 for fce-forming materials. This
prediction works well for (100) and (110) interfaces, where
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the ratio wgo/ 110 i often quite close to the BGJ pre-
diction of /2, but fails for (111), which is seen in simula-
tions [14] to have the smallest u of the three interfaces, not
the largest, as predicted by BGJ. The low value of u for the
(111) interface in fcc systems has been attributed to the
formation of transient hcp stacking faults [7,14].

In this work, we determine, via MD simulation, the
kinetic coefficient for the hard-sphere system—a standard
reference model for close-packed materials. The potential
energy of any realizable hard-sphere configuration is zero;
therefore, the thermodynamics and kinetics of phase tran-
sitions in the hard-sphere system are entirely entropic.
Thus, the hard-sphere model can be used to understand
the role of entropic driving forces in solidification. It has
been shown that the hard-sphere model gives a quantitative
description of the crystal-melt interfacial free energy 7y for
simple close-packed systems [15]. Here, we examine the
degree to which this is true for the kinetic coefficient.

Recently, two MD simulation methods have been devel-
oped to determine p and its anisotropy for pure materials:
the free solidification method (FSM) and the capillary
fluctuation method (CFM). In the FSM [6,9,16], the
solid-liquid interface is first equilibrated at the melting
point. Next, the system is simulated at a variety of different
undercoolings and the interfacial position is monitored.
From this data the interfacial velocity, v, is determined
as a function of the undercooling (AT), from which u is
calculated using Eq. (1). In the CFM [17], w is determined
from equilibrium fluctuations of interfacial position. The
CFM was chosen for this study because the event-driven
nature of hard-sphere MD simulations makes difficult the
use of isothermal-isobaric simulation techniques, required
for the FSM. A detailed review of these two methods can
be found in Ref. [17].

To implement the CFM, separate equilibrium samples of
crystal and melt are constructed at the equilibrium coex-
istence densities. These two samples are then conjoined in
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a single simulation box, which is then equilibrated to form
a stable crystal-melt interface. (The procedures for the
construction of well-equilibrated crystal-melt interfaces
have been outlined in Ref. [18].) For the CFM, a slab
geometry is used for the simulation box [19], in which
the longest direction is perpendicular to the average inter-
facial plane. Of the two directions parallel to the interfacial
plane, one (defining the width W) is about one half of the
length of the longest direction, and the other (defining the
thickness b) is only a few atomic layers in length, making
the interfacial position, A(x, f), a quasi-one-dimensional
function of the distance, x, along the width of the box.
We define h(g, t) as the spatial Fourier transform of the
interface height [h(x, 1) =3, (g, t)exp(igx)]. In the
CFM [14], the kinetic coefficient for a particular interfacial
orientation is calculated by first measuring the decay time
constant, 7, of the time autocorrelation functions of ﬁ(q, 1):

(i, 0" (a.0) = li@P)exp( =), @

The kinetic coefficient, w, is related to the decay time
constant by

1
= . 3
T e (3
The capillary length, T', is given by
I'=9T,/L, )

where ¥ is the interfacial stiffness and L is the latent heat
of fusion per unit volume. By determining 7 for several ¢
values for a given interfacial orientation, the product, I'u,
for the interface can be obtained from a plot of 7~ ! versus
g*. The final determination of u requires a separate calcu-
lation of the interfacial stiffness, y. Within the CFM, ¥ can
be found from the static autocorrelation function of inter-
facial fluctuations [20] using the relation,

- ks,
h(g, 0)P?) = 2",
(Ihta OF) = 5=

(&)

where kp is Boltzmann’s constant. The value of ¥ can then
be determined from a log-log plot of {|1(¢)|?) versus g. The
interfacial stiffness is related to the standard interfacial free
energy, v, by ¥ =y + d*>vy/d6?, where 0 is the angle
between the interface normal and the (100) direction.

To implement the CFM for hard spheres, we first create
equilibrated crystal-melt interfacial samples for three dif-
ferent orientations: (100)[010], (110)[110], and (111) X
[110]. [(hkl) refers to the interface normal (z) and [Imn]
refers to the short direction (y) of the simulation box.] The
values of the coexisting densities for the crystal (p.) and
fluid (p;) are 1.0370~% and 0.9380 3, respectively [18].
The pressure at coexistence is 11.57(3) kzTo 3. The
thickness, b, of the system is as small as 3—5 unit cells
to minimize the number of atoms, increase the interfacial
fluctuation, and make the interfacial position quasi-one-

dimensional. The interfacial width, W, is at least 10-15
times longer than b to give adequate wave-number range
for the calculations. Periodic boundary conditions were
used, which generates two crystal-melt interfaces in the
simulation box. The length of the interface normal is al-
most twice as long as W to ensure independence of the two
crystal-melt interfaces.

After equilibration for 4.2 X 10* time units [for hard
spheres, the time unit is o(m/kzT)"/2, where m is the
particle mass], samples for each interfacial orientation
were simulated for 9.8 X 10 time units. (To perform the
simulations we use the algorithm of Rappaport [21].)
Configurations were recorded every 3.3 time units, gener-
ating 3000 configurations for analysis. To determine the
interfacial position, h(x, t), for each configuration, it is
necessary to define an order parameter ¢ to distinguish
between solidlike and liquidlike particles. In this work, we
use a local order parameter proposed by Morris [22], as
modified in Ref. [19]. For each configuration, two inter-
facial position functions, k(x, ), are determined (one for
each interface). For each of the 6000 Ah(x, r) data sets, the
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FIG. 1. Plot of In{i(g, A*(¢,0)) vs fmo?/(kgT)]*/* at a

variety of ¢ values for (a) (100), (b) (110), and (c) (111). The
lines are obtained from weighted linear regression fit. (The
dotted lines represent g values not used in the final determination
of u—see text).
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Fourier amplitude, A(qg, 1), was determined using Fourier
transform.

Using Eq. (5) we can determine the interfacial stiffness,
¥, for each orientation from the y intercept of a plot of
In{|A(g, 0)|2) versus Ing. From this procedure, we obtain
stiffness values of 0.425(10), 0.410(16), and 0.74(3) (in
units of kzT/c?) for the (100)[010], (110)[010], and
(111)[110] interfacial orientations. In addition to the cal-
culation of u, these values of ¥ can be used to estimate the
interfacial free energy, y. Using the methods of Ref. [23],
we calculate the y to be 0.593(17), 0.572(16), and
0.559(16) for the (100), (110), and (111) interfacial orien-
tations. These values agree (within the error bars) with
those previously reported using both the cleaving method
[24] and the CFM [19], giving us confidence that we are
applying the CFM correctly to this system. We determine
(h(g, 1)h*(g, 0)) using our data set by averaging over all
possible time origins. Following Eq. (2), the values of 77!
for a variety of ¢ values for each interface are obtained by
error-weighted least-squares linear regression from plots of
In{h(q, Hh*(g, 0)) versus {mo?/(kzT)]"/? (Fig. 1). From
Eq. (3), we can obtain the product of u and the capillary
length, uI', from the slope of a plot of 7! versus ¢*>—
shown for all three interfacial orientations in Fig. 2. The
circled points at large ¢ where the CFM exhibits significant
deviations from linearity (especially for the (111) orienta-
tion where stacking faults strongly affect the fluctuations at
small length scales) were not included in the determination
of ul'.

To obtain w from wI’, we need to determine I', which is
given in Eq. (4) in terms of ¥ and L/T,,. For hard spheres
L = P(p./ps— 1), so using the coexistence conditions,
we have L/T,, = 1.22kgzo 3. For hard spheres, the natural
units for w are [kg/(mT,,)]"/?. From our data, we obtain
values of w in hard-sphere units of 1.44(7), 1.10(5), and
0.64(4) for the (100), (110), and (111) interfaces, respec-
tively. These values differ in magnitude and relative order
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FIG. 2. Plot of 7 versus g2 for (a) (100), (b) (110), and
(c) (111) orientations. The lines are obtained from a weighted
linear regression to determine the value of w using Eq. (4) and
(5). The circled points represent data that was excluded from the
calculation of w.

from those estimated by Mikheev and Chernov [25] using
density functional theory (DFT), which are 0.92, 0.65, and
0.71 in hard-sphere units for the (100), (110), and (111)
interfaces, respectively.

Table I summarizes our results for w for hard spheres, as
well as values from simulation and experiment for a variety
of metals. To facilitate comparison, the values for the other
systems were converted to hard-sphere units using appro-
priate values of 7,, and m.

For the hard-sphere system, we find o9 > t110 >
M111, in agreement with simulations for the metals Cu
[8], Ni [33,35], Au [10,33,36], and Al [33]. This ordering
differs from the DFT prediction of Mikheev and Chernov
[25] in which (110), not (111), is the orientation with the
lowest value of u. To quantify the anisotropy, we deter-
mine the ratio oo/ 119, Which for the hard-sphere sys-
tem is 1.31(9). This value is consistent with the simulations
on Ni, Au, Al, and Fe, shown in Table I, as well as with the
predictions of DFT [14,25] and the interpretation of the
BGIJ model [14] in which u is proportional to the inter-
planar spacing giving gio0/ 110 = dioo/d11o = V2 =
1.414. We determine the ratio g0/, for the hard-
sphere system to be 2.26(17), which is at least 50% larger
than the values for the metal simulations listed in Table I,
with the exception of Cu and Au. All results from simula-
tion deviate significantly from the prediction based on
lattice spacing (u00/ 111 = 0.866), but those for the
metals are in good agreement with the DFT [25] prediction
(1.29). The deviations of w;; values from the BGJ pre-
dictions have been attributed to ‘‘stacking fault drag”
[7,14], where crystallization is hindered by the formation
of hcp stacking faults that must anneal out during crystal-
lization, slowing down (111) growth. This gives a possible

TABLE I. Comparison of our results of w for hard spheres
with a variety of previous results. All values are reported in hard-
sphere unit (kgz/mT,,)"/?. The following abbreviations refer to
potential models used in the simulations: Foiles, Baskes, and
Daw (FBD) [26], Lim, Ong, and Ergolessi (LOE) [27], Voter and
Chen (VC) [28], Ergolessi, Parrinello, and Tossati (EPT) [29],
Sturgeon and Laird (SL) [30], Ackland, Bacon, Calder, and
Harry (ABCH) [31]. The values for Ni (FBD) and Au (VC)
differ slightly from the published values ([14,32]) and represent
the latest refined values [33]).

System M 100 M110 M1t Z:TZ %
HS 144(7) 1105 064(4) 13109)  225(18)
Pb(exp.) [5] 1.1 .
Pb(LOE) [33]  1.07(14) 090(14) ...  1203)
Ni(FBD) [33] 1.25(8) 0.89(6) 0.84(14) 1.41(13) 1.53)
Ni(VC) [33] 128(12) - 086(5) 1.48(17)
Cu(FBD) [8] 1.47 0.86 0.61 1.71 241
Au(VO) [33] 1.31(7) 0.8(2) - 1.6(4) -
AuEPT) [10]  1.06(6) 0.71(6) 0396) 1.49(15) 2.7(4)
AI(SL) [33] 0.84(8) 0.59(6) 0.53(11) 1.42(17) 1.74)
Fe(ABCH) [34] 0.84(6) 0678) ...  12517) ...
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explanation for the large value of g9/ for the hard-
sphere system, as the fcc-hcp free energy difference is
extremely small for hard-sphere system [37,38].

The data here suggest that a hard-sphere model can
account for 60%—-90% of the value of w for simple fcc
metals, implying that the dominant contribution to u is
entropic in origin. However, the values of u for these fcc
metals, expressed in hard-sphere units, exhibit a larger
deviation from the hard-sphere model than do the corre-
sponding values for the interfacial free energy, y, [15],
indicating that details of the potential beyond effective
atomic size play a significant role in determining the value
of u for real systems. Further study of the effect of attrac-
tion and soft repulsion on the magnitude and anisotropy of
M is warranted.

In spite of the deviations from the hard-sphere model for
specific systems (Al and Fe, for example), the values of the
kinetic coefficients, u, for close-packed metals are, at least
qualitatively, similar when expressed in natural hard-
sphere units. This suggests the following semiempirical
“rule of thumb” for estimating w for such systems:

w = Cy/R/MT,, ©)

where R is the gas constant, M is the molar mass, and C'is a
constant that depends upon the orientation. Based on the
data presented here, rough values for Cyq and C;, are 1.3
and 1.0, respectively. The value for Cy;; exhibits quite a bit
of variability, ranging from 0.5 to 0.9, depending upon the
substance. Given the lack of accurate experimental data for
o for real materials, such a rule of thumb may prove useful
in solidification studies.
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