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It is shown that at a large temperature and E! 1 the QCD collisional energy loss reads dE=dx�
��m2

D�T
2. Compared to previous approaches, which led to dEB=dx� �2T2 ln�ET=m2

D� similar to the
Bethe-Bloch formula in QED, we take into account the running of the strong coupling. As one significant
consequence, due to asymptotic freedom, dE=dx becomes E independent for large parton energies. Some
implications with regard to heavy ion collisions are pointed out.
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One of the key arguments for the creation of a ‘‘new
state of matter’’ in heavy ion collisions at the Relativistic
Heavy Ion Collider (RHIC) is the observed jet quenching
[1], which inter alia probes the parton energy loss in the
traversed matter. In a quark gluon plasma (QGP) there are
two loss mechanisms: elastic collisions with deconfined
partons [2,3], or induced gluon radiation [4–6]. Presuming
a dominance of the second effect, experimental findings
have often been interpreted in terms of a purely radiative
loss. However, the data-adjusted parameters (either q̂ or
dNg=dy, depending on the approach) are found to be
considerably larger than theoretically expected or even in
conflict with a strong constraint from dS=dy (see, e.g.,
[7] )—which indicates a sizable collisional component of
jet quenching. The effect of collisions (as estimated within
the framework [2,3] ) might actually be larger than con-
ceded for a long time [8,9]. The fact that such estimates
depend crucially on the assumed value of the coupling
should motivate us to scrutinize the principal question:
‘‘what is the value of �?’’ Aside from its phenomenologi-
cal relevance it will also lead to interesting theoretical
insight.

Following Bjorken [2], let us consider the propagation of
an energetic parton (‘‘jet’’) through a static QGP at a
temperature T � �, where the coupling is small. Its
mean energy loss per length can be calculated from the
rate of binary collisions with partons of the medium, as
determined by the flux and the cross section,
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Here �s � dsns is the density of scatterers, with dg � 16
and dq � 12nf being the gluon and quark degeneracies for
nf light flavors, and n��k� � �exp�k=T� � 1	�1 in the
ideal gas approximation. Furthermore, � denotes a dimen-
sionless flux factor, t the 4-momentum transfer squared,
and! � E� E0 the energy difference of the incoming and
outgoing jet. Focusing on the dominating t-channel con-
tributions, the cross sections can be approximated by
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with Cqq �
4
9 , Cqg � 1, and Cgg �

9
4 . For E and E0 much

larger than the typical momentum of the thermal scatterers,
k� T, the relation of t to the angle � between the jet and
the scatterer simplifies to

 t � �2�1� cos��k!; (3)

and the flux factor can be approximated by � � 1� cos�.
At this point, Bjorken integrated in Eq. (1)
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imposing both an IR and UV regularization. The soft cutoff
is related to the Debye mass, jt2j � �2 �m2

D � �T
2, de-

scribing the screening of the exchanged gluon in the me-
dium. The upper bound of jtj was reasoned to be given by
the maximum energy transfer: very hard transfers, say
! 
 E, effectively do not contribute to the energy loss;
in this case the energy is collinearly relocated to the
scatterer. Assuming !max � E=2 implies t1 � ��1�
cos��kE, hence dEBj =dx � ��2P

sCjs
R
k3 k�1�s ln��1�

cos��kE=�2	. Replacing now, somewhat pragmatically,
the logarithm by ln�2hkiE=�2� and setting hki ! 2T,
Bjorken obtained
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for quarks (� ) and gluons (� ), respectively. This ex-
pression can be regarded as an adaption of the QED
Bethe-Bloch formula [10], which describes the
ionization=excitation energy loss of charged particles in
matter, with the logarithm reflecting the relativistic kine-
matics and the long-range Coulomb-type interaction.

There are various refinements of Bjorken’s intuitive
calculation, aiming at the precise determination of the
cutoffs. Worth accentuating is the approach of Braaten
and Thoma [3] who studied, within HTL perturbation
theory, the propagation of a fermion through a QED plasma
(and applied their method also to QCD). For light quarks,
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their result reproduces the generic form (5), with �! mD
in the logarithm and the factor 4 replaced by some function
of nf.

A remark concerning a pragmatic usage of such
‘‘Bjorken-type’’ formulas seems apposite here. Applied
to experimentally relevant temperatures and rather low E,
a formally resulting negative loss has been interpreted, at
times, as an energy transfer of the thermal medium to the
‘‘soft jet.’’ This interpretation, however, is untenable in the
given framework: the jet always loses energy in a collision,
!> 0; cf. (3). A negative result for dEB=dx is de facto the
consequence of interchanged boundaries in the integration
(4). Since �2 is the minimal jtj by definition, dEB=dx
should instead be set to zero for 4E<�2=T. This con-
cern, though, will prove irrelevant by the following
considerations.

In Bjorken’s derivation, � is a fixed parameter.
Conceptionally, such a tree-level approximation may be
appropriate for QED. The strong interaction, however, is
known to vary considerably over the range of scales which
can be probed in heavy ion collisions. Thus, in QCD one
should study quantum corrections to the tree-level ampli-
tudes, whose renormalization will specify unambiguously
the value of ‘‘the’’ coupling.

For the sake of transparency of the argument, consider
first the analogous case of electron scattering in massless
QED. There are three types of (divergent) loop corrections
to the t-channel tree-level process (see, e.g., [11] ). First,
the exchanged photon is dressed by a self-energy. Then,
encoded in the quantity Z1, there are vertex corrections and
finally, via the field strength renormalization Z2, self-
energy corrections to the external fermions. Yet, due to
the identity Z1 � Z2, in QED the renormalized coupling is
determined only by the boson self-energy.

It is appropriate to renormalize the theory (i.e., to fix its
parameters) by a scattering experiment at T � 0. The
relevant part of the amplitude leading to the (vacuum)
cross section corresponding to (2) is �=�P2 ��vac�P2�	.
Here � denotes the bare coupling, and �vac is the un-
renormalized boson self-energy at T � 0. In dimensional
regularization, �vac�P2� � �b0���1 � ln��P2=�2�	P2,
where b0 � 4��0 and �0 is the leading coefficient of the
� function. For a specific momentum transfer P2

r � tr, the
matrix element reads explicitly
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A measurement then specifies the renormalized coupling
��tr� at the scale tr (as introduced in the right-hand side),
which is related to the (infinite) bare coupling by

 ��1�tr� � ��1 � b0��
�1 � ln��tr=�

2�	: (6)

An equivalent relation holds for the coupling ��t� at
an arbitrary scale t, consequently ��1�t� � ��1�tr� �
b0 ln�t=tr� or, in a common alternative form,

 ��t� � �b0 ln�jtj=�2�	�1: (7)

It is underlined that the momentum dependence of the
renormalized (‘‘running’’) coupling is fully specified by
its value at tr or, equivalently, by the parameter �.

In a thermal medium, the boson self-energy has the
generic structure

 �i � �b0f��
�1 � ln��P2=�2�	P2 � fi�p0; p�g;

where the finite ‘‘matter’’ contributions fi differentiate
transverse and longitudinal modes (i � t, l). Then, utiliz-
ing (6), the in-medium scattering matrix can easily be
rewritten in terms of the renormalized coupling,
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This distinct form, where the divergent vacuum contribu-
tion of the self-energy is ‘‘absorbed’’ in the running cou-
pling, elucidates that the amplitude depends only on the
physical parameter � and the matter part of the self-
energy, �i

mat � ��P2�b0fi. Thus the effective IR cutoff
for the energy loss is, as expected, related to the Debye
mass [12]. The main emphasis here, though, is on the
renormalized coupling in Eq. (8) and, consequently, also
in the resulting differential cross section: the scale of the
running coupling is set by the virtuality P2 � t.

It is physically intuitive that this fact is generic. Thus,
instead of a detailed analysis of loop corrections in QCD
(which is more complex), it is useful to invoke a more
comprehensive argument. The vacuum differential cross
section, as a quantity with an unambiguous normalization,
obeys a Callan-Symanzik equation with 	 � 0 [11],

 

�
M

@
@M
� ��g�

@
@g

�
d��t; . . . ;M;g�

dt
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where g � �4���M2�	1=2 is related to the coupling at a
given renormalization pointM. The general solution of this
linear partial differential equation is a function h�x�, whose
argument x � g�M� satisfies Mdg=dM� ��g� � 0. To
investigate the dependence on the momentum scale Q,
with Q2 � t, note that, in the limit of small t, the most
general form of the cross section is d�=dt �
S�Q=M; g�=t2. Consequently, the function S obeys
��Q@Q � ��g�@g	S � 0 (mind the minus sign). The cor-
responding characteristic equation, with ��g� � ��0g

3 at
leading order, then leads readily to the running coupling as
introduced above. In other words, renormalization group
invariance implies that loop corrections to the differential
cross section can be ‘‘absorbed’’ in the tree-level expres-
sion by replacing �! ��t�.

A running coupling, as given by Eq. (7) with b0 � �11�
2
3nf�=�4�� in QCD, alters the integral (4) completely [13],
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Opposed to Bjorken’s expression (4), the weighted cross
section is actually UV finite—due to the asymptotic weak-
ening of the strong interaction, large-t processes are less
effective. For hard jets, the integral (10) becomes indepen-
dent of the energy E; i.e., it is then controlled solely by the
coupling at the screening scale. The necessary condition,
jt1j � TE� �2 �m2

D � �T
2, is, for representative pa-

rameter values, in line with the previous assumption E�
T to simplify the kinematics [14]. Hence from this per-
spective, the collisional loss can become E independent
already for typical jet energies—provided, of course, that
the resummation improved perturbative framework gives
at least a semiquantitative guidance at larger coupling
(which will be advocated below).

In this case, the collisional energy loss approaches
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In the ideal gas limit, the remaining integration yields
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which differs structurally from former expressions as
Bjorken’s (5). Aside from the energy independence dis-
cussed above, dE=dx is proportional to� (instead of�2). It
is highlighted that the considerations above also show that
the relevant scale for the coupling is the (perturbatively
soft) screening mass rather than a ‘‘characteristic’’ thermal
(hard) scale �T, as commonly presumed.

In order to quantitatively compare Eq. (12) to previous
estimates it is necessary to specify parameters, namely �
in (7) and the cutoff �, i.e., the Debye mass. Similar
renormalization arguments as above led in [15] to an
implicit equation for mD; to leading order

 m2
D � �1�

1
6nf�4���m

2
D�T

2; (13)

whose solution can be given in terms of Lambert’s func-
tion. Obviously, also this improved perturbative formula is
justified strictly only at temperatures T � �. Notwith-
standing this, it is found in quantitative agreement with
lattice QCD calculations down to ~T 
 1:2Tc.

It may come as a surprise that a leading order formula
does reproduce nonperturbative results [16]. Thus, it is
worth emphasizing that the adjusted parameter � �
0:2 GeV for nf � 2 [15] is right in the expected ballpark,
refuting a possibility of an uninterpretable fit. Moreover,

the 1-loop running coupling (7), with the same �, repro-
duces lattice calculations for another quantity, namely, the
heavy quark potential V�r� at T � 0, notably up to large
distances corresponding to ��r�2� 
 1 [15]. Although at
first sight rather different quantities, V�r� and mD�T� are in
fact closely related by the renormalized t-channel scatter-
ing discussed above—which determines also the colli-
sional energy loss. In other words (tidying the order of
the arguments): one can renormalize the theory at T � 0
[i.e., determine once and for all � from V�r�], verify the
applicability of the approach for larger couplings as rele-
vant near Tc by successfully calculating mD�T�, and make
then predictions for dE=dx.

With this justification, an extrapolation of Eq. (12) as
presented in Fig. 1 might be not too unreasonable.
Assumed here is Tc � 160 MeV and �2 � �12 ; 2	m

2
D to

estimate the uncertainty due to the IR cutoff. Shown for
comparison are results from (5); here � � mD [likewise
from (13)] albeit � in the prefactor (unjustified, but as often
presumed) fixed at the scale QT � 2�T. It turns out that
already near Tc, the estimates from Eq. (12) exceed those
from (5), even for rather large values of E.

For phenomenological implications it is instructive to
take further into account a main effect of the strong inter-
action near Tc. From the distinct decrease of the QGP
entropy seen in lattice QCD calculations [18], one can,
on general grounds, infer a similar behavior for the number
densities �s. In the framework of the quasiparticle model
[19], the distribution functions in Eq. (11) are to be eval-

uated with n��
������������������������
m2
s�T� � k2

p
	, where the effective coupling

in the quasiparticle masses, m2
s / �eff�T�T

2, is adjusted to
lattice results for the entropy. As shown in Fig. 2, near
Tc—despite the strong interaction—the plasma becomes
transparent due to the reduced number of ‘‘active’’ degrees
of freedom. Qualitatively, this characteristic behavior is in
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FIG. 1 (color online). Light quark collisional energy loss:
Eq. (12) vs the prevalent expression (5) (which yields negative
values for very large T) for representative jet energies. For
details, see text.
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line with the observed quenching measure RAA, when
going from SPS (Super Proton Synchrotron) to RHIC
energies.

In conclusion, it has been demonstrated in the context of
thermal field theory that renormalization does not only
dictate the value of the running coupling for a given
quantity, but that the momentum dependence can also
influence crucially the structure of results. For the QCD
collisional energy loss, the relevant scale in ��t� is the
(perturbatively soft) screening mass mD �

����
�
p

T (instead
of T, as commonly presumed). The increasing coupling at
soft momenta leads to a parametric enhancement com-
pared to previous calculations; see Eqs. (12) vs (5). On
the other hand, due to asymptotic freedom, dE=dx be-
comes independent of the jet energy as E! 1. Thus, the
asymptotic behavior of the underlying interaction makes
the energy loss qualitatively different in QCD and QED
[where an analog of Eq. (5) indeed holds].

Except very near Tc, Eq. (12) suggests a larger colli-
sional energy loss than previously estimated [2,3]. This
finding can be interpreted as a facet of the ‘‘strongly
coupled’’ QGP (sQGP), which is characterized by large
interaction rates. In fact, � �

R
dtd�=dt with running

coupling can actually be significantly larger than expected
from the widely used expression ��fix / �

2�Q2
T�=�

2 &

1 mb. Thus, the present approach hints also at a natural
explanation of the phenomenologically inferred large cross
sections O�10 mb� [20,21].

Close to Tc, though, the particle density is known to be
substantially reduced. This implies that, irrespective of the
strong coupling, the sQGP becomes transparent near the
(phase) transition. Such a distinct temperature dependence
of the energy loss should be observable. The quantification
of this effect (including a discussion of implications of the
running coupling for the radiative energy loss) will be the
subject of a forthcoming study.
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FIG. 2 (color online). Influence of reduced scatterer density
near Tc on the gluon energy loss. Below ~T 
 1:2Tc, Eq. (13)
overestimates the Debye mass as obtained in lattice QCD; hence
dE=dx could be slightly larger than depicted by the dotted line.
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