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We consider five-dimensional gauge theories where all fields propagate in the bulk and the fifth
direction is compactified on the orbifold S1=Z2, and where the fifth components of the gauge bosons play
the role of the standard model Higgs boson (gauge-Higgs unification). The gauge symmetry breaking is
realized through the appropriate orbifold boundary conditions and through the Hosotani mechanism. We
show that for any such theory (with neither brane gauge kinetic terms nor anomalous gauge-group factors)
the assumption that the low-energy vector-boson spectrum consists of the W�, Z, and � only, is
inconsistent with the experimental requirements sin2�W ’ 1=4 and � � m2

W=�m
2
Zcos2�w� � 1.
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Introduction.—In the standard model (SM), the Higgs
mechanism is responsible for generating fermion and
vector-boson masses. Although the model is renormaliz-
able and unitary, it has severe naturality problems associ-
ated with the so-called ‘‘hierarchy problem.’’ At loop-level
this problem reduces to the fact that the quadratic correc-
tions tend to increase the Higgs boson mass up to the UV
cutoff of the theory. Extra-dimensional extensions of the
SM offer a novel approach to gauge symmetry breaking in
which the hierarchy problem could be either solved or at
least reformulated in terms of the geometry of the higher-
dimensional space. A particularly attractive scenario is
offered by the Hosotani mechanism [1] where gauge sym-
metry breaking is generated by the vacuum expectation
value of the extra component of the gauge field, A4, whose
Kaluza-Klein zero mode plays a role of the four-
dimensional Higgs boson, a setup known as gauge-Higgs
unification (GHU). Though five-dimensional gauge sym-
metry and locality prevent a tree-level potential for A4,
radiative effects generate a nontrivial effective potential,
leading to a prediction for the Higgs boson mass and the
scale of gauge symmetry breaking. In such models the
boundary conditions determine the gauge group of the light
sector (presumably SU�3� � SU�2� �U�1�), and the vac-
uum expectation value hA4i provides a second stage of
breaking, presumably to U�1�EM. The fact that the sym-
metry breaking pattern of the low-energy theory is pre-
dicted by the gauge and fermion (fermions enter the
effective potential for the zero mode of A4 at a loop level)
structure of the fundamental theory is indeed very appeal-
ing. Other inherent problems of the SM could also be
addressed in extra-dimensional scenarios. For instance,
within the SM the amount of CP violation is not sufficient
to explain the observed barion asymmetry [2]; the GHU
scenario offers a possible solution since in such models the
geometry can be a new source of explicit and spontaneous
CP violation [3].

The most economic realization of the GHU paradigm
uses SU�3�c � SU�3�w as the gauge group of the full
theory [4]; however, the model predicts the phenomeno-
logically unacceptable value of the weak-mixing angle (we
define �W as the angle that diagonalizes the Z-� mass
matrix) �W � �=3 [5]. Though there exist various rem-
edies to this problem (localized gauge kinetic terms [6,7]
or allowing a low-energy gauge group with an extra—
anomalous—U�1� [5,8] ), in this Letter we will restrict
ourselves to the simplest (hence more attractive) scenario
and we will not pursue such options. Other models also
have serious problems, for example, when the gauge group
is SU�5� it is natural to expect spontaneous breaking of
SU�3�c [9]. The next minimal choice, SU�6�, again suffers
from the presence of an extra light U�1� that must be
broken by an extra elementary Higgs field [10]. So, in
the simplest 5D examples of the GHU either sin2�W is
not phenomenologically acceptable, or the low-energy
gauge group is larger than SU�3� � SU�2� �U�1�.

Because of these observations it is natural to ask whether
there exist 5D GHU models with all fields propagating in
the bulk without localized excitations and where the light
sector is an SU�3� � SU�2� �U�1� gauge theory broken to
U�1� by the Hosotani mechanism, and such that the pre-
dictions for the weak-mixing angle and the oblique pa-
rameters are close to the experimental values. We will
argue below that these constraints cannot be satisfied; no
such model is phenomenologically viable.

The models.—The Lagrangian is assumed to have the
form L � ��FaMN�

2=4� fermion, ghost and gauge-fixing
terms, where FaMN � @MAaN � @NA

a
M � g5fabcAbMA

c
N

[with fabc gauge-group structure constants and g5 	

�mass��1=2 the gauge coupling] and M;N; . . . �
�0; 1; 2; 3; 4� the five-dimensional space-time indices with
the first four corresponding to Minkowski space (labeled
by Greek letters �; �; . . . ). The last index corresponds to
the compact direction; we use x4 � y.
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We will consider a space of the form M 
 �R=Q� where
M denotes the four-dimensional Minkowski space-time
and Q is a discrete group with two elements:
(i) translation, y! y� L, where L is the size of the
compact subspace; and (ii) reflection, y! �y.

We assume that under Q the gauge fields transform
according to [11]
 

AaN�y� L� � VabAbN�y�;

AaN��y� � ��1��N;4 ~VabAbN�y�;
(1)

where V, ~V are real and orthogonal matrices (in a basis
where the structure constants are real) representing invo-
lutions of the gauge algebra. Note that the orbifolding (1)
allows also for the generalized twisting discussed in [11].
We will first assume that the gauge group is simple and
then generalize.

For a simple group the transformations (1) leave the
Lagrangian invariant provided

 V daVebVfcfdef � fabc; ~Vda
~Veb

~Vfcfdef � fabc:

(2)

In addition, Eq. (1) must provide a representation of Q.
Using the fact that �y � ���y� L�� � L and that
���y� � y we find

 V ~VV � ~V; ~V2 � 1: (3)

The models we consider are then defined by the
Lagrangian L, which specifies the dynamics, as well as
by the matrices V, ~V that determine the behavior under Q.
Similar matrices are associated with the transformation
rules for the fermions [11]; however, those will not be
relevant for the arguments presented hereafter.

Light spectrum.—Higher-dimensional theories must sat-
isfy the minimum constraint of generating the experimen-
tally observed light spectrum; because of this it is of
interest to derive the general properties of these excita-
tions. To this end it proves convenient to expand the
various fields in Fourier modes in the compact coordinate
y; the coefficients are then four-dimensional fields for
which the action of @y generates a mass term; all
y-dependent modes will then be heavy (mass	 1=L) while
light excitations are associated with y-independent modes.

The light gauge bosons will be denoted by Aâ�; the light
modes associated with AN�4 behave as four-dimensional
scalars and will be denoted by �r̂ � Ar̂N�4. Using the y
independence of these modes and the behavior of the field
under Q we find [11]

 Aâ� � Vâ b̂A
b̂
� � ~Vâ b̂A

b̂
�; �r̂ � Vr̂ ŝ�

ŝ � �~Vr̂ ŝ�
ŝ:

(4)

If we denote by P� the subspace of generators character-
ized by�1 eigenvalues of ~V and V andN� the subspace of
generators characterized by �1 eigenvalues of ~V, and �1

eigenvalues of V, then the light gauge bosons and scalars
are associated with P� and N�, respectively. Denoting by
R the set of remaining generators we find that (2) and (3)
imply that

 �N�; P�� 
 N�; �N�; N�� 
 P�; �N�; R� 
 R:

(5)

Extracting from L the terms that contain only light
fields, we find the usual gauge terms for the Aâ and the
gauge-invariant (under the subgroup associated with the
Aâ) kinetic terms for the�. Note, however, that the form of
L disallows any tree-level potential for�; it follows that at
tree level all four-dimensional bosons are either massless
or have a mass 	1=L.

If these models are to be phenomenologically viable,
they must be able to generate masses for the appropriate
vector bosons at a characteristic scale v	 100 GeV. This
symmetry breaking step can result from radiative correc-
tions since these will generate a nonvanishing (effective)
potential Veff for the � at � 1 loops. This opens the
possibility that these models will undergo two stages of
symmetry breaking: the first generated by the behavior
under Q and the second, at a presumably lower scale,
generated radiatively by the scalars �. Since the scale of
Veff is 1=L most models predict both scalar and vector-
boson masses of O�1=L�, in particular, the m� is too light.
This problem can find a natural solution by choosing the
gauge group, boundary conditions, and fermion content
[5,10]; obtaining such a realistic symmetry breaking pat-
tern is a fundamental issue in the GHU scenario.

Phenomenological constraints.—Here we consider
those five-dimensional models which contain only gauge
boson fields and whose light excitations are described by
an SU�3� � SU�2� �U�1� gauge group. We assume that
the� effective potential will lead to the expected pattern of
spontaneous symmetry breaking; in addition we require

 sin 2�W 	 0:25; � ’ 1 (6)

at tree level. Since we will exhibit a serious problem
associated with the minimal requirements (6) we will not
investigate whether there exist models where the scalar
effective potential produces the correct pattern of sponta-
neous symmetry breaking. It is possible that no such model
exists, in which case our arguments can only be strength-
ened. We then assume that the zero modes of the A4 acquire
vacuum expectation values v� 1=L from an effective
potential generated at one loop.

We denote by E� andHi the roots and Cartan generators
of Lie algebra of the full theory normalized such that
TrHiHj � �ij, TrE��E� � ��;�. Then it is straightfor-
ward to show that the generators of any SU�2� subgroup
[a possible choice for the SM SU�2�] will be of the form
[12]
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 J0 �
1

j�j2
� �H; J� �

���
2
p

j�j
E�; J� � �J��

y:

(7)

The SM hypercharge generator Y generates a U�1� sub-
group and commutes with J0;�; we then have

 Y � ŷ �H; ŷ � � � 0: (8)

The light scalars that can contribute to the vector-boson
mass matrix (in case they acquire a vacuum expectation
value) can be arranged according to their SU�2� represen-
tations. Assume first that one scalar containing light modes
is associated with a linear combination of Cartan gener-
ators x �H. Then, for any root vector � such that x � � � 0
we have �x �H; E�� � �x � ��E� which is consistent with
(5) only if E� 2 R; in particular, this implies that x �H
commutes with all generators associated with the SM
SU�2� �U�1�, so the associated scalar will be a singlet
and cannot contribute to the mass structure of the light
vector bosons.

Therefore, the light scalar state which is an eigenvector
of J0 with the eigenvalue I that belongs to a multiplet of
isospin Imax�Imax � 1� should be of the form (in the adjoint
representation we will identify a state jXaiwith a generator
Xa; the action of a generator on such a state is given by
XbjXai � j�Xb; Xa�i)

 jIi �
X

�

v�jE�i; (9)

then J0jIi � IjIi implies

 � � � � j�j2I: (10)

Note that � cannot be parallel to �.
Next we consider the repeated application of the low-

ering and rising operators to jIi,

 Jn�jIi �
X

�

v��njE��n�i: (11)

Note that not all such states will vanish (otherwise jIi
would be an SU�2� singlet), hence E��n� 2 N� for
some integers n. Using (5) we then find

 �E��n�; E���n�� � ��� n�� �H 2 P�; (12)

which implies that the set of generators f��� n�� �Hg,
such that �� n� is a root, are in P�.

Suppose first that there are two root vectors �, �0 that
contribute to the sum (9), then P� will contain generators
proportional to ��� n�� �H, ��0 � n0�� �H (for some
integers n, n0); in addition, P� will also contain J0. But this
is impossible since the electroweak group has rank 2. It
then follows that a single root vector � can contribute to
the sum in (9): the constraint on the rank allows a single
light scalar multiplet.

This also implies that the hypercharge generator (8)
must be of the form �r�� s�� �H for some constants r

and s; using (8) then implies

 ŷ �
�� ��̂ � ���̂

j�� ��̂ � ���̂j
: (13)

Then the (canonically normalized) electroweak bosons
correspond to the zero modes of the gauge fields associated
with the generators �̂ �H, E��, ŷ �H; we denote these
zero modes by W0, W�, and B, respectively. Then we can
write
 

A� � W��E� �W��E�� �W0
��̂ �H� B�ŷ �H� � � �

A4 � �E� ��?E��: (14)

The terms in the Lagrangian responsible for the genera-
tion of vector bosons masses are / Tr�A�; A4�

2. Using
�E�; E�� � N�;�E��� and the standard properties of the
N�;� [12], we find
 

Tr�A�; A4�
2 � �N2

�;� � N
2
��;��W

� �W�

� ���̂ � ��W0 � �ŷ � ��B�2 � � � � : (15)

Now, N2
�;� � p�� � �� � j�j2p�p� 1�=2, where p is an

integer such that p�� � is a root, but �p� 1��� � is not.
For our case, using (10), we have p � Imax � I for N��;�
so

 N2
�;� � N

2
��;� � j�j

2�Imax�Imax � 1� � I2�: (16)

Assuming that jIi is a member of a multiplet with
maximum isospin Imax and it is the component that gets a
vacuum expectation value v=

���
2
p

, it is straightforward to
show that the mass terms in L take the form
 

Lmass �
v2

2
fj�j2�Imax�Imax � 1� � I2�W� �W�

� ��̂ � �W0 � ŷ � �B�2g; (17)

so the electroweak mixing angle and � parameter are given
by

 sin 2�W � 1� ��̂ � �̂�2; � �
Imax�Imax � 1�

2I2 �
1

2
:

(18)

Since either �� � or �� � is a root (otherwise I �
Imax � 0), then the commutator �E�; E���� either vanishes
or it is proportional to E2���. But since E�, E��� are
roots, then, using (5) shows that a nonzero commutator
implies that E2��� � E� or E2��� � E��, both of which
are impossible. Hence

 �E�; E���� � 0: (19)

There are then two possibilities: (i) ��� � is not a
root. Then �E��; E��� � 0 which, together with (19) and
�E��; E���� / E��, implies � � ��� �� � j�j2=2.
Combining this with (10) we find
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 jIj=2 � ��̂ � �̂�2 � m=4; (20)

where m is an integer, 0 � m � 4 [12]. Of these choices
onlym � 1, 4 allow � � 1, but in this case sin2�W � 0:75,
0, both of which are phenomenologically uninteresting
[13]. (ii) If ���� is a root then �E��; E��� / E����,
but now �E��; E����� must vanish [or else it would
belong to P� and so must be / E� or
/ E�� which is impossible; i.e., for the same reasons
leading to (19)]. In this case � � ��� �� � j�j2 whence
sin2�W � 1 which is again phenomenologically
uninteresting.

Nonsimple groups.—When the gauge group is not sim-
ple Eq. (2) is replaced by

P
defgdVdaVebVfcfdef � gafabc

(and an equivalent expression for ~V) where the ga denote
the gauge coupling constants taking the same value for all
indices a belonging to one group factor. These imply that if
V maps the gauge fields of some factor group Gi into those
of another factor Gj, then these groups must have the same
algebras and gauge couplings. Models where this is not
trivial (i � j) have a gauge group of the form GN � � � �
where the N factors of G have the same couplings con-
stants and so have an additional permutation symmetry P
which is respected by V and ~V.

Phenomenologically we must require that the low-
energy gauge fields be singlets under P [else the light
gauge bosons would be members of a nontrivial P multi-
plet so that the electroweak gauge group would be of the
form SU�2�n �U�1�l for some integers n, l > 1]. The
SU�2� �U�1� generators will be a direct sum of generators
of the form (7) and (8) with one contribution from each of
theN factor groups (each term containing the same� and ŷ
as a result of the invariance under P ). Hence the crucial
expressions (10) and (17) remain unchanged and the same
problems associated with � and �W occur.

Conclusions.—We have shown that within the gauge-
Higgs unification scenario (with neither brane gauge ki-
netic terms nor anomalous gauge-group factors) in 5D the
phenomenological conditions (6) necessarily imply a light
electroweak gauge group Glight larger than SU�2� �U�1�.
This general statement is illustrated by specific cases that
have appeared in the literature, e.g., [5] (sin2�W � 3=4)
and [10] [extra U�1� factor in Glight]. It is unlikely that
GHU model with an extended Glight can be phenomeno-
logically viable since this would require the Hosotani
mechanism to generate a two stage breaking, Glight !

SU�2� �U�1� at a scale V by one 4D scalar mode �,

and SU�2� �U�1� ! U�1� at a scale v� V by another
mode �. But this hierarchy is determined by the 1-loop
effective potential generated by all bosonic and fermionic
modes, which mix � and �. Then, in the absence of fine-
tuning, the hierarchy V � v cannot be maintained.

These results do not necessarily generalize to more than
5 dimensions[14]. The conditions under which models in
� 6 dimensions are phenomenologically viable will be
examined in a future publication.
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