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Torque Detection using Brownian Fluctuations
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We report the statistical analysis of the movement of a submicron particle confined in a harmonic
potential in the presence of a torque. The absolute value of the torque can be found from the auto- and
cross-correlation functions of the particle’s coordinates. We experimentally prove this analysis by
detecting the torque produced onto an optically trapped particle by an optical beam with orbital angular

momentum.
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The way in which deterministic perturbations affect the
random walk of a small particle immersed in a fluid bath
(Brownian motion) underlies many physical, chemical, and
biological phenomena: examples include Brownian motors
[1], molecular transport processes [2], thermally activated
transitions in a potential landscape [3], and thermal fluc-
tuations in an optical trap [4]. In a harmonic potential well,
a Brownian particle oscillates around the equilibrium po-
sition. A statistical analysis of these fluctuations allows one
to measure pico- to femto-Newton forces [5—11]. Another
type of perturbation is a mechanical torque which can be
exerted on the Brownian particle. This has previously been
studied by measuring the rotation rate of the particle itself
[12-22] and a statistical description is available for the
case of rotational Brownian motion (the Brownian move-
ment of the particle around its own axis) [23]. However, the
precise manner in which the torque affects the statistics of
the translational Brownian trajectories (the Brownian
movement of the center of mass of the particle) is still
unknown. Here we report the analysis and measurements
of the movement of a submicron particle confined in a
harmonic potential in the presence of a torque. The abso-
lute value of the torque can be found from the auto- and
cross-correlation functions of the particle’s coordinates.
We anticipate our study to be a starting point for the
development of new techniques to measure the torque
produced, for example, by biomolecules, molecular mo-
tors, or by optical beams with angular momentum.

We consider a sphere of mass m and radius R suspended
in a liquid medium and confined within a harmonic poten-
tial well, where it moves randomly due to the thermal
excitation [Fig. 1(a)]. We suppose an external torque is
exerted on the sphere. In the absence of the potential well
due to the friction the sphere rotates around the z axis with
a constant angular velocity ), whose value results from a
balance between the torque applied to the sphere and the
drag torque: Tgpme =T X Fgpe = yr X v =yr X (r X
), where r is the sphere’s position, v is its linear velocity,
v = 6mR is the friction coefficient, and 7 is the viscosity.
Hence, the force acting on the sphere from the torque
source is given by F = yr X (), which depends on the
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position of the sphere. A time average of the torque exerted
on the particle can then be expressed as (7) = y(r X (r X
O)) = y{Qr?) = yQ(r?), where (r?) is the mean square
displacement of the sphere in the plane orthogonal to the
torque.

The Einstein-Ornstein-Uhlenbeck equations [24] for the
Brownian motion of the sphere in the plane perpendicular
to the rotation axis can now be presented as:
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FIG. 1 (color online). (a) Harmonic potential well U(x, y) =
%(x2 + y2) (k is the restoring force constant or stiffness of the
harmonic oscillator) with a Brownian particle inside and with an
external torque acting on the particle. (b) Experimental setup:
1—trapping 785 nm laser beam, 2—532 nm beam, 3—holo-
graphic mask, 4—Dove prism, 5—100 X 1.3NA objective, 6 —
collimating 40X objective, 7—quadrant photodetector.
(c) Position of the sphere in the chamber when only the
532 nm LG propagates, and (d), when both the 532 nm and
the 785 nm beams propagate in the chamber. The arrows show
the propagation direction of the trapping and LG beams.
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where £ is the force constant of the harmonic oscillator and
V2kgTyn,(t) and 2kzTym,(t) are two independent
white Gaussian random processes that represent the
Brownian forces at temperature 7 in the x and y direction.
To simplify the problem we set the rotation axis coaxial to
the axis of the potential well. Assuming a low Reynolds
number regime [25,26], we can neglect all inertial terms
such as m dzy, (U

The terms +7y{Qy(r) and —yQx(¢) introduce a coupling
between the equations. The auto- and cross-correlation
functions for the movement of the sphere along the x and
y directions are given by:

x()x(t + Ar) = ((0)y(t + A1)

= sty cost0n, )

(x()y(t + Ar))y = kBTTe""A"/“/ sin(QA7). 4)

Accordingly, a change is produced also in the power spec-
tral density (PSD) of the x and y coordinates, which, as
well as the autocorrelation function, is normally employed
in the calibration of the photonic force microscope
[4,26,27]. Hence, the presence of a torque has to be taken
into account in the calibration of force constant of the trap
and in the force measurement.

The actual shape of the correlation functions depends on
the ratio yQ) /k. For yQ < k the restoring force induced by
the potential well is dominant and at the limit y{) << k the
autocorrelation function is reduced to the known expres-
sion for the behavior of a Brownian particle in a harmonic
potential [27], while the cross correlation is negligible. The
correlation decay time is 7, = y/k and its measurement
allows one to determine the force constant of the potential
well. For y{) > k the rotational effect is dominant; at the
limit y{) > k we get the sinusoidal auto- and cross-
correlation functions describing a rotating particle.

Both these limiting cases have already been studied:
namely, when no external torque is applied to the
Brownian particle in the parabolic potential (see, for ex-
ample, Refs. [4—10] ) or when the torque is applied to a free
particle and can be straightforwardly measured from the
particle rotation rate assessed by video or Fourier analysis
[12,14-18,28]. Equations (3) and (4) bridge these two
cases and provide new insights into the intermediate situ-
ation, which neither of the cases can address. As we show
below the analysis of the auto- and cross-correlation func-
tions allows us to gain sensitivity over the methods based
on the explicit measurement of the rotation rate.

For an experimental verification of our conclusions, we
have analyzed the Brownian motion of an optically trapped
polystyrene sphere. A focused beam creates a harmonic
trapping potential as a result of electric field gradient
forces exerted on the sphere. This optical trap is generated
by a cw 785 nm beam at the focal plane of a 100 X 1.3NA
objective lens inside a chamber [Fig. 1(b)]. The chamber is
prepared using two cover slips separated by a 50 um
spacer and filled with a solution containing polystyrene
spheres (radius R = 0.5 um). The forward scattered light
from the trapped sphere is collimated by a 40X objective
onto a quadrant photodiode (QPD). The trap force constant
k can be adjusted by changing the intensity of the laser
beam.

We induce a torque on the particle by using another
optical beam that carries an orbital angular momentum
[20,29-31]. This beam is produced from a linearly polar-
ized 532 nm cw beam transformed by a holographic mask
that generates a [ = 10 order Laguerre-Gaussian (LG)
beam of power P = 3 mW. The beam carries the flux of
orbital angular momentum Toay = [P/w = 7.5 X
108 Nm, where @ = 4 X 10'> Hz is the light frequency.
Only about 1% of the total flux of the orbital angular
momentum is transferred to the dielectric sphere [21] and
only in the portion of the beam that overlaps the sphere. We
estimate that in our experiments the beam transfers the
torque 7¢ = 7.5 X 1072! Nm to the sphere. A Dove prism
can be inserted in the optical path so as to reverse the
handedness of the helical phase front and therefore the sign

y (pm)

W

0 20 40 60 15 10 05 00 05 10 15
Time (s) X (um)

Correlation functions

0 20 40
At(s)

FIG. 2 (color online). Experimental unbiased auto- and cross-
correlation functions in the presence of the torque induced by a
LG beam with [ = +10. The trap force constant k is low enough
(0.9 fN/um) not to significantly influence the rotational motion
of the sphere. The continuous lines show the mean values
obtained using one series of data acquisition (acquisition time
60 s, sampling rate f; = 1 kHz). In the insets: (a) time traces for
the x (black) and y (gray) coordinates; (b) histogram of the x
coordinate; (c) vector force field acting on the particle in the xy
plane.
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of the orbital angular momentum without changing the
direction or polarization of the beam.

In the absence of the 785 nm optical trap [Fig. 1(c)] the
532 nm beam moves the sphere towards the upper cover
slip due to its radiation pressure and the gradient forces in
the perpendicular plane do not allow the sphere to escape.
In such conditions we can observe the clockwise and
anticlockwise rotation of the sphere depending on the
handedness of the beam.

When the trapping 785 nm beam coaxial to the LG beam
is switched on and the trap force constant k is low enough
(0.9 fN/um), the rotation motion of the sphere is not
significantly influenced. We can track the position of the
particle with the QPD and calculate the corresponding
auto- and cross-correlation functions (Fig. 2). The rotation
is clearly visible in the time traces [Fig. 2(a)] and from the
position probability density function [Fig. 2(b)] which is
not Gaussian in this case and it can be readily observed in
the Fourier spectra of the traces, as was reported earlier
[16]. The presence of the periodical component in the
correlation functions is consistent with Egs. (3) and (4)
and permits us to measure the mean rotation rate of the
bead and the torque exerted on it. We found the rotation
period to be T, = 20 =5 s and an orbital radius of r =
1.4 = 0.3 pum, in agreement with the video data. This
corresponds to a torque produced by the beam of 7, =
yQr? =3.9 + 1.8 X 1072! Nm when the friction coeffi-
cient, corrected for the distance to the surface [26], is y =
4+ 1 X 1078 Ns/m. The experimental numerical values
are expressed as mean * standard error and are obtained
from three series of data. Figure 2(c) shows the measured
vector force-field acting on the particle, where the azimu-
thal component due to the applied torque is dominant.

We now change the conditions of the experiment,
namely, by increasing the trap stiffness, to verify whether
the effect of the torque on the Brownian motion of the
sphere can still be retrieved. The trapping 785 nm beam
power and therefore the trap stiffness are increased
(100 uW, 16 fN/um); the sphere is more confined in
the center of the trapping beam [Fig. 1(d)] and does not
display a rotational motion, as can be readily appreciated
from the time traces [Fig. 3(a)] and from the position
probability density function [Fig. 3(b)] which is now
Gaussian. We notice that in this case the Fourier analysis
of the experimental traces does not show the presence of
the torque existing in the system. However, the behavior of
the auto- and cross-correlation functions near At =0
(Fig. 3) unambiguously shows that the torque produced
by the orbital angular momentum of the LG beam still
affects the Brownian trajectories. Fitting these experimen-
tal functions to the theoretical ones and calculating the
value of (r?) from the traces, we are able to measure the
torque acting on the particle as 4.9 + 0.7 X 102! Nm.
Figure 3(c) depicts the vector force field acting on the
particle, which results from the superposition of a azimu-

Correlation functions

FIG. 3 (color online). Experimental auto- and cross-
correlation functions in presence of the torque induced by a
LG beam with [ = +10. The trap force constant k is high enough
(16 fN/um) to confine the sphere. The continuous lines show
the mean values obtained using five series of data acquisition
(acquisition time 60 s, sampling rate f; = 1 kHz). The dotted
lines show the fitting to the theoretical shape (the fitting was
made on the central part of the curve for Az =[—25s,2 s]). In
the insets: (a) time traces for the x (black) and y (gray) coor-
dinates; (b) histogram of the x coordinate and in black the fitting
to a Gaussian distribution; (c) vector force field acting on the
particle in the xy plane.

thal component due to the applied torque and a radial
component due to the harmonic trap. The same procedure
was repeated for the other handedness of the Laguerre-
Gaussian beam (Fig. 4) leading to a torque of 3.9 = 0.8 X
1072 Nm. The lower value can be explained by the power
losses in the Dove prism. The presence of the torque also
affects the calibration of the trap force constant. Indeed, the
value of k found from the experimental traces accounting
for the torque has the value 16 £ 1 fN/um, while not
accounting for the torque it is 18 = 1 fN/um. The experi-
mental values are expressed as mean * standard error and
are obtained from five independent series of data.
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FIG. 4 (color online). The same as in Fig. 2 when the torque is
produced by a LG with [ = —10.
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The value of the torques measured in our experiments
(4 X 10721 Nm) is lower than the ones previously re-
ported, e.g., 1072° Nm for DNA twist elasticity [15], 5 X
1078 Nm for the movement of bacterial flagellar motors
[12], 2 X 1072° Nm for the transfer of orbital optical an-
gular momentum [21], or 5 X 10~ Nm for the transfer of
spin optical angular momentum [18]. Hence, as we have
shown, a detailed analysis of the Brownian fluctuations of a
particle trapped in a harmonic potential may be a starting
point to build new tools for the measurement of torque in
micrometric systems, like those produced by biomole-
cules, hydrodynamic interactions between colloidal par-
ticles, or by optical beams that carry orbital angular mo-
mentum. The restoring force acting on the Brownian par-
ticle depends on the trapping power. Hence, this could
make it possible to study how the torque exerted by a
certain source varies in the presence of a controlled me-
chanical load. We also notice that the presence of a torque
significantly affects the correlation functions of the
Brownian particle in the potential well so that experimental
results previously obtained to measure only mechanical
forces could reveal the presence of torques in the studied
systems if analyzed using Egs. (3) and (4).
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