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quasiperiodic, strongly chaotic, and intermittent chaotic behaviors.
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A typical record generated by a natural, technological,
or societal system consists of periods where a relevant
variable undergoes small scale fluctuations around a
well-defined level provided by the long term average of
the values available, interrupted by abrupt excursions to
values that differ significantly from this level. Such ex-
treme events are of paramount importance in a variety of
contexts since they can signal phenomena such as the
breakdown of a mechanical structure, an earthquake, a
severe thunderstorm, flooding, or a financial crisis [1].
Information on the probability of their occurrence and
the capability to predict the time and place at which this
occurrence may be expected is thus of great value in,
among others, the construction industry or the assessment
of risks. While the probability of such events decreases
with their magnitude, the damage that they may bring
increases rapidly with the magnitude as does the cost of
protection against them. These opposing trends make the
task of prediction extremely challenging.

There exists a powerful statistical theory of extremes [2].
In its classical version, it deals with independent identi-
cally distributed random variables, and, in the asymptotic
limit of infinite time observational window, it can be for-
mulated entirely in terms of three universal types of proba-
bility functions: the Gumbel, Fréchet, and Weibull
distributions. This conclusion holds true for correlated
sequences as well, as long as the time autocorrelation
function falls sufficiently fast to zero [3]. On the other
hand, the fundamental laws of nature are deterministic. It is

by now well established that deterministic dynamics is at
the basis of a wide variety of complex nonlinear phe-
nomena encountered at different levels of observation, in
the form of abrupt transitions, a multiplicity of states, or
spatiotemporal chaos. The objective of this Letter is to
outline a theory of extremes for deterministic systems
and to identify its principal signatures with respect to the
classical statistical approach. Our approach will build on
the possibility to extract probabilistic properties from the
deterministic dynamics without resorting to coarse-
graining, provided that the dynamics is sufficiently com-
plex to possess some minimal ergodic properties [4,5].
Accordingly, a continuous (fine-grained) description will
be used throughout.

The basic question asked in a problem of extremes is,
given a sequence X0; . . . ; Xn�1 of successive values of an
observable monitored at regularly spaced times 0,
�; . . . ; �n� 1��, what is the (cumulative) probability dis-
tribution Fn of the largest value x found, Mn � max
(X0; . . . ; Xn�1); see, e.g., Ref. [2]:

 Fn�x��Prob�X0�x; . . . ;Xn�1�x�; a�x�b; (1)

with Fn�a� � 0, Fn�b� � 1 and the associate probability
density �n�x� deduced by differentiation of Fn�x�. Now, by
definition, the multivariate probability density to realize
the sequence X0; . . . ; Xn�1 [not to be confused with the
aforementioned �n�x�] is

 �n�X0; . . . ; Xn�1� � �Prob to be in X0 in the first place�

�
Yn�1

k�1

�Prob to be in Xk�1 given one was in X0 k time units before�: (2)

The first factor in Eq. (2) is given by the invariant proba-
bility density ��X0�. This quantity is smooth as long as the
underlying system, be it stochastic or deterministic, pos-
sesses sufficiently strong ergodic properties. In contrast,
the two classes differ by the nature of the conditional
probabilities inside the n-fold product. While in stochastic

systems these quantities are typically smooth, in determi-
nistic dynamical systems they are Dirac delta functions
��Xk� � f

k��X0��, where f�X0� stands for the formal solu-
tion of the evolution equations and the upper index denotes
the order in which the corresponding operator needs to be
iterated.
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By definition, the cumulative probability distribution
Fn�x� in Eq. (1)—the relevant quantity in a theory of
extremes—is the n-fold integral of Eq. (2) over
X0; . . . ; Xn�1 from a up to the level x of interest. This
converts the delta functions into Heaviside theta functions,
yielding
 

Fn�x� �
Z x

a
dX0��X0�

� ��x� f��X0�� . . . ��x� f�n�1���X0��: (3)

In other words, Fn�x� is obtained by integrating ��X0� over
those ranges of X0 in which x � ff��X0�; . . . ; f�n�1���X0�g.
As x is moved upwards, new integration ranges will thus be
added, since the slopes of the successive iterates fk� with
respect to X0 are, typically, both different from each other
and X0 dependent. Each of these ranges will open up past a
threshold value where either the values of two different
iterates will cross or an iterate will cross the manifold x �
X0. This latter type of crossing will occur at x values
belonging to the set of periodic orbits of all periods up to
n� 1 of the dynamical system.

These observations entail that in a deterministic system
Fn�X� and its associated probability density �n�x� possess
the following generic properties. (i) Since a new integra-
tion range can only open up by increasing x and the
resulting contribution is necessarily non-negative, Fn�x�
is a monotonically increasing function of x, as indeed is
expected. (ii) More unexpectedly, the slope of Fn�x� with
respect to x will be subjected to abrupt changes at the
discrete set of x values corresponding to the successive
crossing thresholds. At these values, it may increase or
decrease, depending on the structure of the branches
fk��X0� involved in the particular crossing configuration
considered. (iii) Being the derivative of Fn�x� with respect
to x, the probability density �n�x� will possess discontinu-
ities at the points of nondifferentiability of Fn�x� and will,
in general, be nonmonotonic.

Properties (ii) and (iii) are fundamentally different from
those familiar from the statistical theory of extremes,
where the corresponding distributions are smooth func-
tions of x. In particular, the discontinuous nonmonotonic
character of �n�x� complicates considerably the already
delicate issue of prediction of extreme events [6]. We have
thus identified some universal signatures of the determi-
nistic character of the dynamics on the properties of
extremes.

We now turn to the derivation of some more specific
properties of Fn�x� and �n�x� for three prototypical classes
of dynamical systems. These systems have in common the
property of ergodicity, guaranteeing the existence of a
smooth invariant density. Furthermore, they are supposed
to undergo a discrete time dynamics defining a one-
dimensional mapping. Inasmuch as many key features of
the dynamics of continuous time flows can be captured by
reducing their evolution to such mappings on a suitable

Poincaré surface of section [4,7], the results to be reported
below should thus apply to large classes of physically
relevant systems.

Uniform quasiperiodic motion.—The canonical form of
the evolution law, whatever the detailed structure of the
underlying system might be, is given by the twist map [4,7]

 �n�1 � a��n mod1; (4)

where a is irrational. The invariant density ���� is uni-
form, ���� � 1, and the associated cumulative distribution
is F�x� � x. The expansion rates of the evolution law
f��� � a�� and of its higher iterates are equal to unity,
and there are neither fixed points nor periodic orbits. The
discontinuities in the slopes of Fn�x� thus arise solely from
the first universal mechanism identified in our previous
discussion, namely, the intersections between the different
iterates of f���. According to Eq. (4), the left branches of
these iterates cut the ordinate axis at the points
a; . . . ; na mod1, hereafter denoted for compactness as
fag; . . . fnag, and the right branches cut the abscissa axis
at the points 1� fag; . . . 1� fnag. Now, a classic result of
number theory [8] asserts that, given an irrational number
a: (i) the set of fag; . . . fnag arranged in ascending order
partitions the unit interval into steps of at most three sizes,
� � fkmag, � � 1� fkMag, and �� �, where fkmag and
fkMag are, respectively, the smallest and the largest of the
values found in the set. (ii) There are n� 1� km, n� 1�
kM, km � kM � n� 1 steps of length �, �, and �� �,
respectively. (iii) km, kM, �, �, and n satisfy the relation-
ships km��kM��1, n � max�km; kM�, and n �
km � kM � 1.

It can be shown that these results have a direct bearing
on the properties of recurrence times in quasiperiodic
motion [9]. As we see presently, they also allow one, in
conjunction with the symmetries entailed by the unit value
of the slope of all iterates of f���, to evaluate Fn�x� from
Eq. (3). We illustrate the procedure for the contribution of

 

FIG. 1. Illustration of the origin of the contributions to the
second term in Eq. (5), for n � 4 and a � �

���
5
p
� 1�=3.
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steps of size a to Fn�x�. Clearly (see Fig. 1), such steps are
associated with the intersection of adjacent left branches
of successive iterates of fkm. To fix ideas consider fkm,
fkm�1, . . ., which terminate at points A1, A2, . . . of ordi-
nates 1� � and 1� 2�, . . ., respectively. The intersection
of two consecutive branches, say, fkm and fkm�1, are
defined by the intersection of fkm and a vertical line drawn
from point A2 (point I in Fig. 1), and their ordinates are all
equal to 1� �. It follows that the theta functions in Eq. (3)
will be satisfied provided that x lies above the threshold
value x � 1� �. The gap opened up when x exceeds this
threshold is the segment � in Fig. 1. At the level of Eq. (3),
it gives a contribution obtained by integrating over �0

between 1� � and x, yielding a value equal to x� 1�
�. The argument can readily be extended to steps of sizes�
and �� �, leading to the following overall structure of
Fn�x�:

 

Fn�x� � �km � kM � n��x� 1� �� ��

� ��x� 1� �� �� � �n� km��x� 1� ��

� ��x� 1� �� � �n� kM��x� 1� ��

� ��x� 1� ��: (5)

We conclude that, generically, Fn�x� undergoes three slope
changes at the x values 1� �� �, 1� �, and 1� �. Its
rightmost part starts at x � 1�max��;�� and has a slope
given by km � kM � n� n� km � n� kM � n. Its first
nontrivial leftmost part starts at x � 1� �� � and has a
slope given by km � kM � n, which may, but does not have
to, be equal to one. These conclusions are fully confirmed
by the results of direct numerical simulation based on
Eq. (4), as depicted in Fig. 2.

Fully developed chaotic maps in the interval.—
Dynamical systems exhibiting this kind of behavior are
at the core of classical chaos theory. They do not derive

from a canonical form as in Eq. (4). Still, they share some
common features such as to possess a mean expansion rate
larger than 1 and an exponentially large number of unstable
periodic trajectories [10]. In view of the comments follow-
ing Eq. (3), these properties will show up through the
presence of an exponentially large number of points in
which Fn�x� will change slope and an exponentially large
number of plateaus of the associated probability density
�n�x�. One may refer to this latter peculiar property as a
‘‘generalized devil’s staircase.’’ As a corollary, the first
smooth segment of Fn�x� will have a support of O�1� and
the last one an exponentially small support, delimited by
the rightmost fixed point of the iterate f�n�1� and the right
boundary b of the interval. Since Fn�x� is monotonic and
Fn�b� � 1, the slopes will be exponentially small in the
first segments and will gradually increase as x approaches
b. Again, these properties differ markedly from the classi-
cal statistical theory of extremes. As an illustration, Fig. 3
depicts the functions F20�x� and �20�x� as deduced by
direct numerical simulation of the tent map [4], f�X� �
1� j1� 2Xj, 0 � X � 1. The results confirm entirely the

 

FIG. 2. Cumulative probability distribution Fn�x� for the twist
map, Eq. (4) with a � �

���
5
p
� 1�=3. The upper curve corresponds

to n � 4 and the lower to n � 10. Notice that in both cases the
number of slope changes in Fn�x� is equal to 3 as predicted by
Eq. (5), whose positions are indicated in the figure by vertical
dashed lines.

 

FIG. 3. (a) Probability density and (b) cumulative probability
distribution for the tent map as obtained numerically using 106

realizations. Dashed curves represent the prediction of the clas-
sical statistical theory of extremes. The irregular succession of
plateaus in �20�x� and the increase of the slope of F20�x� in the
final part of the interval are in full agreement with the general
theory. The irregularity increases rapidly with the window (con-
trary to the quasiperiodic case), and there is no saturation and
convergence to a smooth behavior in the limit of infinite window.
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theoretical predictions. The simplicity of this dynamical
system allows one to establish a further result of interest,
namely, that the probability mass in the interval �1�
1=n; 1� is of O�1�, which also happens to be the case in
the classical statistical theory.

Intermittent chaotic maps in the interval.—Intermittent
systems share the property to possess mean expansion rates
close to unity in some regions of phase space or, in their
implementation as one-dimensional maps, a slope of f�X�
versus X close to unity. We take, without loss of gener-
ality, this property to occur in the leftmost boundary a. A
widely used mapping in chaos theory satisfying this con-
dition is [7]

 f�X� 	 �X� a� � ujX� ajz � "; a � X � b; (6)

where z > 1 and " measures the distance from strict tan-
gency. As "! 0 successive iterates fk�X� will follow the
f�X� � X axis closer and closer and are thus bound to
become increasingly steep at their respective reinjection
points where fk�X� � b. As a result, the positions of these
points [and hence of the (unstable) fixed points other than
from X � a, too, whose number is still exponentially
large] will move much more slowly towards a and b
compared to the fully chaotic case. Two new qualitative
properties of Fn�x� can be expected on these grounds: The

probability mass borne in the first smooth segment of this
function near X � a and the length of the last smooth
segment near X � b will no longer be exponentially small.
This is fully confirmed by direct numerical simulation of
Eq. (6) for the symmetric cusp map [3], f�X� �
1� 2jXj1=2, �1 � X � 1, as seen in Fig. 4. Using the
explicit form of f�X�, one can check straightforwardly
that Fn�x� 	 1� x as x! �1, Fn�0� 	 n�1, a final seg-
ment of Fn�x� of width O�n�1�, and Fn�x� 	 1� n�1�
x�2=4 as x! 1.

We finally comment on the limiting behavior of the
extreme value distributions. Since nondifferentiability of
Fn�x� holds for any window value, it is bound to subsist at
large n. No simple limiting behavior is thus to be expected.
In particular, for fully developed chaos, the first point of
nondifferentiability of Fn�x� will necessarily lie at a finite
distance from the boundaries of the interval of variation of
x. The situation may be more clear-cut in uniform quasi-
periodic motion, where, under certain conditions [8],� and
� in Eq. (5) tend to zero as n! 1, entailing that non-
differentiability is squeezed near the upper boundary. This
question deserves further investigation. Future investiga-
tions in this area should aim at analyzing the statistics of
extremes in more detailed models describing concrete
chemical, fluid mechanical, or geophysical processes.
Furthermore, the experimental data available on extreme
values should be reconsidered in the light of the results
reported in this work.
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[2] P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling
Extremal Events (Springer, Berlin, 1999).

[3] M. R. Leadbetter and H. Rootzen, Ann. Probab. 16, 431
(1988).

[4] G. Nicolis, Introduction to Nonlinear Science (Cambridge
University Press, Cambridge, England, 1995).

[5] A. Lasota and M. Mackey, Probabilistic Properties of
Deterministic Systems (Cambridge University Press,
Cambridge, England, 1985).

[6] V. Balakrishnan, C. Nicolis, and G. Nicolis, J. Stat. Phys.
80, 307 (1995).

[7] H. G. Schuster, Deterministic Chaos (VCH Verlag,
Weinheim, 1988).

[8] N. B. Slater, Proc. Cambridge Philos. Soc. 63, 1115
(1967).

[9] M. Theunissen, C. Nicolis, and G. Nicolis, J. Stat. Phys.
94, 437 (1999).

[10] R. Devaney, Chaotic Dynamical Systems (Addison-
Wesley, Redwood City, CA, 1989).

 

FIG. 4. As in Fig. 3 but for the cusp map. The irregularities
pointed out in connection with Fig. 3 subsist, the main new point
being the presence of a more appreciable probability mass in the
left part of the interval.
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