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Wolfram Möbius, Richard A. Neher, and Ulrich Gerland
Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for Nanoscience (CeNS),

LMU München, Theresienstrasse 37, 80333 München, Germany
(Received 12 May 2006; published 14 November 2006)

Using a theoretical model for spontaneous partial DNA unwrapping from histones, we study the
transient exposure of protein-binding DNA sites within nucleosomes. We focus on the functional
dependence of the rates for site exposure and reburial on the site position, which is measurable
experimentally and pertinent to gene regulation. We find the dependence to be roughly described by a
random walker model. Close inspection reveals a surprising physical effect of flexibility-assisted barrier
crossing, which we characterize within a toy model, the ‘‘semiflexible Brownian rotor.’’
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Although the DNA in eukaryotic cells is packaged into
chromatin, its genetic information must be accessible to
proteins for read out and processing [1]. The structural
organization of chromatin is fairly well known: the funda-
mental unit is a nucleosome core particle (NCP) consisting
of about 150 base pairs (bp) of DNA wrapped in 1.7 turns
around a cylindrical histone octamer [2], and NCPs are
regularly spaced along the DNA, which is further compac-
tified into higher order structures. In contrast, the confor-
mational dynamics of chromatin is poorly understood.
Recent experiments studied these dynamics on the level
of individual NCPs using single-molecule force [3] and
fluorescence [4,5] techniques. The latter directly observed
spontaneous conformational transitions where part of the
DNA unwraps reversibly, allowing proteins to access DNA
sites that are normally buried. This mode of access, driven
by thermal fluctuations, is particularly important for pas-
sive DNA-binding proteins, e.g., transcription factors.
Here, we study spontaneous DNA unwrapping within a
theoretical model; see Fig. 1(a).

Consider a buried DNA site that is accessible only when
a DNA segment of length L is unwrapped. How long is the
typical dwell time �a in the accessible state, i.e., the
window of opportunity for protein binding? And what is
the typical time �i for which it remains inaccessible? Li
et al. [4] measured �a � 10–50 ms and �i � 250 ms for
L� 30 bp, while Tomschik et al. [5] found �a �
100–200 ms and �i � 2–5 s for L� 60 bp. Taken to-
gether, these results indicate a significant dependence on
L in both time scales, which cannot be reconciled with an
early theoretical study [6] suggesting an all-or-none un-
wrapping mechanism where the nucleosome fluctuates
between two conformations only. Instead, these results,
as well as previous biochemical experiments [7], imply a
multistep opening mechanism.

In this Letter, we propose and characterize a theoretical
model for this multistep mechanism, similar in spirit to
previous work on histone-DNA interactions which focused
mainly on static properties or the calculation of free energy
barriers [6,8,9]. Within our model, we clarify the physics

that determines the L dependence of the time scales �a and
�i. We find that the dependence of �i can be interpreted
with a simple random walker model, which may serve as a
fitting model for future experiments that probe the time
scales at different L values. In contrast, the L dependence
of �a reflects the intricate coupling between the DNA
polymer dynamics and the dynamics of breaking and re-
forming DNA-histone contacts. To analyze the effect of
this coupling, we introduce a toy model, the ’’semiflexible
Brownian rotor’’ (SBR); see Fig. 1(b). We identify a ge-
neric physical effect of flexibility-assisted barrier crossing,
which may arise also in other contexts. It is marked by a
characteristic plateau of the time scale at intermediate L.
Biologically, the L dependence is relevant, because it
creates a positioning effect for transcription factor binding
sites relative to nucleosomes [10]. We expect that the
integration of single NCPs into nucleosome arrays will
alter the absolute time scales but not the basic physics of
the DNA (un)wrapping process.

Nucleosome model.—The NCP crystal structure [2]
shows that both the electrostatic and hydrogen bond inter-
actions between the DNA and the histone complex are

FIG. 1 (color online). (a) Illustration of our nucleosome
model. The DNA-histone interaction is localized at contact
points attracting the red (dark) beads. The DNA is shown in
the ground state as well as a conformation where the first contact
is open. (b) Illustration of the semiflexible Brownian rotor (SBR)
model. In this toy model, the tradeoff between bending energy
and DNA-histone interaction in the nucleosome is mimicked by
an angular potential V�’�, exerting a torque on the attachment
angle ’ of a semiflexible polymer at the origin.
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mainly localized to 14 contact points, about evenly spaced
by 10.2 bp along a superhelical contour with radius 4.2 nm
and helical pitch 2.4 nm. Because we are interested only in
the dynamics at a fixed (physiological) salt concentration,
we combine the interactions at each of these points into a
simple Morse potential [11]. The DNA-histone interaction
energy is then

 Uc � �kBT
X
n

�1� e�jri�n��cnj=��2; (1)

where cn is the nth contact point on the superhelical
contour, � is the depth, and � the width of the contact
potential. A discrete bead-spring model with beads at
positions ri models the DNA, and i�n� is the bead bound
to contact n in the fully wrapped state. The beads are
connected by a harmonic potential Us � "s

P
i�jri�1 �

rij � a�2=2 with a typical bead separation a and a stiffness
"s set to 800kBT=nm2. Below, we use three beads between
contacts and at each end (about 2:5 bp=bead), unless stated
otherwise. Increasing the discretization or "s raises the
computational effort without affecting our results qualita-
tively. We account for the bending rigidity of DNA by an
energy Ub � "b

P
i�1� cos�i� with bending angle �i at

bead i and a bending stiffness "b adjusted such that
the apparent persistence length matches the known ‘p �
50 nm for DNA at physiological salt conditions.
Furthermore, we incorporate the screened electrostatic
self-repulsion of DNA through a Debye-Hückel potential
UDH � kBTlB��a�2

P
i<je

��jri�rjj=jri � rjj with the
Bjerrum length lB � 0:7 nm, a charge density � �
2 charges=bp, and a screening length ��1 � 1 nm. We
use a contact radius � � 0:5 nm in between the range of
hydrogen bonds and electrostatic interactions and adjust
the depth � of the Morse potential to match the binding
free energy [12] of � 1:5kBT per contact estimated from
biochemical experiments [7,9]. Taken together, the total
energy is U � Us �Ub �UDH �Uc. To study the dy-
namics of our model, we perform Brownian dynamics
simulations with the overdamped Langevin Eqs.

 

_r i�t� � ��brriU�frjg� � �i�t�; (2)

where �b is the bead mobility, and the absolute time scale
is set by a2=�bkBT. The random forces �i satisfy h�i�t� �
�j�t

0�i � 6�bkBT�i;j��t� t
0�.

Unwrapping dynamics.—A suitable reaction coordinate
for the opening of a single contact is the attachment angle
’, see Fig. 1(a), which changes by �’ � 45	 in this
process. The equilibrium distribution p�’� for the first
contact is shown in Fig. 2(a). Its bimodal form suggests
to approximate a contact by a 2-state system, with rates kb,
ku for binding and unbinding, respectively. To test whether
such a reduced description is sufficient, we initiate simu-
lations in the fully wrapped state and determine the func-
tionally relevant time scales, i.e., the average time �i�n�
until contact n opens to expose the nth DNA segment and
the average time �a�n� until contact n recloses [13,14]. The

results are shown in Fig. 2(b) for n 
 5 [15]. Within the
reduced description of consecutive 2-state contacts, �i�n�
can be calculated as a mean first passage time [16] for a 1D
biased random walker with hopping rates ku, kb. The
walker starts at site zero (reflecting boundary) and reaches
site n after an average time

 �i�n� �
k�1
u

1� K

�
1� Kn

1� K�1 � n
�
�
K�1Kn�1

ku
: (3)

Here, K � kb=ku can be interpreted as the effective equi-
librium binding constant per contact. The exponential in-
crease of �i�n� is clear also from the equivalence of the
biased random walk with a random walk against a free
energy ramp. The excellent fit of (3) to the simulation data
(dashed line) indicates that the reduced description is
sufficient for the dwell times in the inaccessible state. In
contrast, it proves insufficient for the dwell times in the
accessible state, because �a�n� in Fig. 2(b) is clearly not
constant as one would expect with a fixed binding rate kb.
Thus, we find �a�n� to be a more sensitive probe for the
physics of spontaneous site exposure than �i�n�.

To probe the effect of the DNA length on the rewrapping
kinetics, we vary the number of overhanging beads before
contact 1 and plot �a�1� as a function of the overhang
length L in Fig. 3(a). Superimposed is the data of
Fig. 2(b) (bottom) with n converted to contour length.
The good agreement of these dependencies indicates that
�a is determined by polymer dynamics. Indeed, we will
now see that contact breaking and reformation of a rotating
semiflexible polymer displays much richer physics than a
simple 1D barrier crossing process.

Semiflexible Brownian rotor.—The essential physics of
contact formation in the nucleosome is captured by the toy
model depicted in Fig. 1(b): A semiflexible polymer with
contour length L and persistence length ‘p is attached
to a point about which it can rotate in a plane. The attach-
ment angle ’ experiences a periodic potential V�’� �
V0 cos�2�’=�’�, which creates preferred angles sepa-
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FIG. 2. (a) Equilibrium distribution of the DNA angle ’ de-
fined in Fig. 1(a). The two peaks at ’ � 0 and ’ � 45 deg
correspond to the fully wrapped state and the state with contact 1
open, respectively. (b) Kinetics of DNA site exposure within our
nucleosome model. The dwell time in the inaccessible state
(squares) increases roughly exponentially with the number of
contacts that must open to render a DNA site accessible. The
dashed line is a fit to Eq. (3). The circles show the average time
the nth contact point remains open.
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rated by potential barriers as in our nucleosome model
(there, the barrier for contact reformation results from the
DNA bending energy and the electrostatic repulsion). The
main difference is that the length of the rotating polymer is
constant for this SBR, while it changes slightly when a
contact breaks or reforms in the nucleosome. Also, we do
not consider a directional bias in the SBR, because it is not
essential for what follows. So far, barrier crossing of semi-
flexible polymers was studied only for situations where the
entire polymer experiences an external potential [17]. In
the NCP, the potential acts only on the angle at the attach-
ment point.

To characterize the phenomenology of the SBR, we
determine its barrier crossing rate 1=�w with Brownian
dynamics simulations of a discrete bead-spring model
[18]. The circles in Fig. 3(b) show �w as a function of
L=‘p for V0 � 5kBT. We observe that at very short lengths,
�w follows the stiff rod behavior �w � L3 [19] indicated by
the dotted line. However, above a certain length ‘c, there is
a regime where �w is nearly insensitive to L, before it rises
again. Hence, for lengths L> ‘c the semiflexible polymer
crosses the barrier much faster than the stiff rod. What is
the physical mechanism for this acceleration? One effect of
a finite flexibility is a reduced mean end-to-end distance
(due to the undulations in the contour), which in turn leads
to a larger rotational mobility. However, with V�’� � 0,
the rotational diffusion time of a semiflexible polymer over
an angle �’ (squares) is almost identical to that of a stiff
rod (dashed line) when L < ‘p. Hence the acceleration is

not a mobility effect. Note that the dashed line is also the
diffusion limit for �w, which induces a second crossover
from a reaction to a diffusion controlled process. The
equivalent diffusion limit is shown also in Fig. 3(a) (dashed
line). It indicates that the �a�n� data for the nucleosome is
indeed in the accelerated barrier crossing regime.

Flexibility-assisted barrier crossing.—To understand
the interplay between the polymer dynamics and the bar-
rier crossing dynamics qualitatively, we recall the basic
aspects of each: (i) A semiflexible polymer of length L
relaxes its conformational degrees of freedom in a time
�L4=‘p [20]. Conversely, within a given time �, a local
bending deformation is ‘‘felt’’ only over a length ‘�
�‘p��

1=4. (ii) The probability current over a barrier is
proportional to the quasiequilibrium occupancy of the
transition state and to the relaxation rate ��1 out of this
state. Together, (i) and (ii) imply that ‘c is the length of the
polymer segment that gets deformed during the relaxation
process away from the potential peak. We estimate ‘c by
noting that the attachment angle relaxes according to _’ �
���‘c�@V=@’, where ��‘c� � ‘�3

c is the rotational mo-
bility of the deformed segment. Hence, ��
‘3
c��’=2��2=V0 and with ‘c � �‘p��1=4, we find

 ‘c � C‘p
kBT
V0

�
�’
2�

�
2
; (4)

where C is a constant to be determined below. For lengths
below ‘c, the entire polymer is involved in the relaxation
process, i.e., it behaves like a stiff rod.

Quantitative theory for the crossover.—To render the
above picture quantitative, we employ the Langer theory
for multidimensional barrier crossing processes [21]. For
the case at hand, one can show [22] that the barrier crossing
time simplifies to �w �

�
	�
e2V0=kBT , where 	� is the eigen-

value associated with the unstable mode at the saddle
point. We calculate 	� using the continuous wormlike
chain model in the weakly bending approximation [23].
At the transition state the chain is straight, e.g., along
the x axis. We denote deviations from this con-
figuration by y�x; t�. The chain dynamics follows @ty �
��kBT‘p=
�@4

xy with a friction coefficient 
 . With � �
V0�2�=�’�2 denoting the curvature of the potential at the
transition state, the torque on the attached polymer end is
��@xyjx�0. This torque must be balanced by a local bend
resulting in the boundary condition kBT‘p@2

xyjx�0 �

��@xyjx�0. The other boundary conditions are yjx�0 �
@2
xyjx�L � @3

xyjx�L � 0. We find a unique unstable mode
with eigenvalue 	� � kBT‘p�4=4
L4 and � determined
by

 

��sinh��� � sin���
cosh��� � cos��� � 2

�
������
123
p L

‘c
; (5)

where ‘c is as in (4) with C �
������
123
p

. In the limit L� ‘c,
we find 	� � 3�=
L3 independent of the stiffness,
whereas in the opposite limit 	� � 3�=
‘3

c independent

FIG. 3. (a) The dependence of the dwell time �a�n � 1� on the
overhanging DNA length (diamonds) is compatible with �a�n�
when n is converted to contour length (gray open circles). The
dashed line indicates the diffusion limit (see main text for
details). (b) The average barrier crossing time �w (open circles)
for the SBR model of Fig. 1(b). At small lengths, the barrier
crossing time follows that of a stiff rod (indicated by the dotted
line). Beyond a crossover length ‘c � ‘p, barrier crossing is
much faster than for a stiff rod. For large lengths, �w approaches
the diffusion limit, i.e., �w of the free SBR (open squares). With
L < ‘p, free diffusion of the SBR is virtually indistinguishable
from free diffusion of a rigid rod (dashed line). The crossover
from the rodlike regime to the intermediate regime is well
described by the theoretical analysis (solid line), see main text.
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of L. Figure 4 shows (a) the unstable eigenmode for
L=‘c � f0:1; 1; 10g and (b) the crossover in the barrier
crossing time. The eigenmode shape confirms our qualita-
tive picture: stiff and short polymers respond to the torque
by rotating as a whole, whereas the torque shapes a bulge
of size �‘c in longer polymers. For a discrete polymer
model, the same analysis can be performed, but the eigen-
value 	� must be computed numerically. The solid line in
Fig. 3 shows the resulting barrier crossing time for the
same discretization as used in the Brownian dynamics
simulations of the SBR model. Indeed, the crossover
from the rodlike to the flexibility-assisted barrier crossing
is well described by this analysis. The deviations at larger
L can be attributed to finite barrier corrections [24].

Discussion and outlook.—The experiments [4,5] have
shown that the functionally relevant time scales �i and �a
depend on the position on the nucleosomal DNA. Our
theoretical study suggests that these time scales addition-
ally depend on the total DNA length. The position depen-
dence of �i should follow the random walker model (3),
which is the minimal model for a gradual, multistep open-
ing mechanism. However, we expect that the position-
dependence of �a and the length-dependence of both
time scales will reflect the polymer dynamics of the
DNA. Within our toy model, the semiflexible Brownian
rotor, we find three physically distinct regimes for this
length dependence; see Fig. 3(b). The intermediate regime
displays a striking flexibility-assisted barrier crossing ef-
fect, the onset of which is marked by the new length scale
‘c of Eq. (4). It can be interpreted as the length over which
the polymer contour is deformed as it passes over the
potential barrier. Because ‘c is considerably smaller than
the persistence length ‘p, we expect that the onset of the
intermediate regime will not be detectable in nucleosomes.
However, nucleosomes should display the crossover from
flexibility-assisted barrier crossing to diffusion-limited dy-
namics as shown in Fig. 3(a). All three regimes of Fig. 3(b)
could be probed in an experimental realization of the SBR
model, e.g., with an actin filament as the rotating polymer.
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FIG. 4. Dynamics at the barrier. (a) The unstable eigenmode
for three different lengths. Polymers shorter than ‘c rotate
without significant deformation, while long polymers form a
bulge of size �‘c at the origin. (b) The prefactor of the Kramers
time ~�w � 1=	� as a function of the length. The prefactor
increases as L3 if L� ‘c and is constant if L� ‘c.
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