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Chaos via Shilnikov’s Saddle-Node Bifurcation in a Theory of the Electroencephalogram
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We study the bifurcation diagram of a mesoscopic model of the human cortex. This model is known to
exhibit robust chaotic behavior in the space of parameters that model exterior forcing. We show that the
bifurcation diagram has an unusual degree of organization. In particular, we show that the chaos is
spawned by a codimension-one homoclinic bifurcation that was analyzed by Shilnikov in 1969 but has

never before been found in a physical application.
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Introduction.—Modern approaches to understanding
brain function have become increasingly concerned with
the dynamics of neurons and neuronal populations [1,2]. In
an attempt to formally understand these dynamics and their
relationship to the brain’s ongoing behavior, a range of
theoretical approaches have been developed to mathemati-
cally model the essential physiological features of such
activity [3,4]. Of particular relevance to understanding
brain function are those approaches that scale to the whole
brain, are associated with some form of noninvasive ex-
perimental measurement, and have a time scale commen-
surate with that of cognition. In this regard, theories of the
brain’s scalp recordable electrical activity, or electroen-
cephalogram (EEG), which evolves on a millisecond
time scale, have been of particular interest. Because a
single EEG electrode records the simultaneous activity of
many thousands of weakly connected cortical neurons, the
modeling of the EEG is particularly amenable to a mean
field spatially continuous approach [5—7]. The resulting
formulations enable the theoretical investigation of neuro-
nal population dynamics using a range of methods drawn
from dynamical systems and bifurcation theory. These
models therefore offer the possibility of characterizing
and explaining the qualitative changes, or bifurcations, in
cortical spatiotemporal dynamics that have been inferred to
occur in cognition [3] and in a range of central nervous
system disease processes such as epilepsy [8]. Using a
local version of a physiologically specific mean field the-
ory of the mammalian EEG [9,10] we explain the emer-
gence of robust, physiologically plausible, chaos through
an unusual sequence of bifurcations. The route to chaos
that we find was proposed by Shilnikov as early as 1969
[11] but has, to our best knowledge, never been found
before in a physical model. We show that it leads to a
bifurcation diagram with an unusually high degree of
organization in the physiologically admissible part of pa-
rameter space. The analysis of the local model points to the
existence of invariant dynamical structures in the full
partial differential equation model. As a number of generic
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and thus easily detectable bifurcations are organized about
the Shilnikov saddle-node bifurcation an experimental
strategy suggests itself in which the parametric organiza-
tion of these bifurcations, in, e.g., cortical slice prepara-
tions, can be used to experimentally infer whether real
mammalian cortex is capable of supporting chaos. This
may provide an alternative to the largely unsuccessful
attempts [12] to identify chaotic activity directly from
noisy and nonstationary time series.

The mesoscopic EEG model.—The cortical activity is
locally described by the mean soma membrane potentials
of the excitatory neuron population, %,, and the inhibitory
neuron population, #;, along with the mean synaptic activ-
ities 1,,, 1;,, 1,;, 1;;, each modeling the interaction between
two populations as indicated by the subscripts. The con-
nection with physiological measurement is through #,,
which, on the basis of extensive experimental evidence
[7,13], is assumed to be linearly related to the EEG. The
dynamical equations are
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where h,, and h;, are the resting potentials and /., and
hieq are the equilibrium potentials. Following [10] we set
her = hjyy = =70mV,  h,q =45mV, and h =
—90 mV. The relaxation time scales are set to 7, = 9 ms
and 7; = 39 ms. These two equations describe, respec-
tively, the response of the mean soma membrane potential
of excitatory and inhibitory neuronal populations to syn-
aptic current. In the local case considered here these syn-
aptic currents can be traced to a single essential source:
local feedforward and feedback excitatory (/,,, 1,;) and
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inhibitory (/;,, ;) synaptic activity. The time course of
such activity, based on extensive experimental evidence
[7], is modeled by a critically damped oscillator driven by
the mean rate of incoming excitatory or inhibitory axonal
pulses. Thus, for the synaptic activity we have

d? d )
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dr? dt
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where A and B are the postsynaptic potential peak ampli-
tudes and a and b the synaptic rate constants. We set A =
0.81 mV, B=4.85mV, a =490 s™!, and b = 592 s~ 1.
Excitatory (inhibitory) neurons receive a total of N,, (N,;)
synapses from nearby excitatory neurons and N;, (N;;)
synapses form nearby inhibitory neurons, where N,, =
N,; = 3034 and N;, = N;; = 536. The functions S, con-
vert the mean membrane potential of the neuron popula-
tions to an equivalent mean firing rate, and are given by

Sy(hy) = m{1 + exp[—v2(h, — 0,)/s, ", (D)

where g = e, i. For the firing thresholds we have 6, =
6; = —50 mV, and for the associated standard deviations
s, = s; =5 mV. The maximal firing rates are fixed to

m, = m; =500 s”!. Our main bifurcation parameters
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FIG. 1. Top row: Chaotic time series of the mesoscopic EEG

model along with its power spectrum. Bottom row: Experimental
data from a single occipital electrode measurement of human
EEG along with its power spectrum (normalized, arbitrary units).
Note the dominant alpha peak around 11 Hz.

are p,, and p,;, the excitatory input from distant excitatory
cortical and subcortical neurons.

Parameter values were chosen to be physiologically
admissible and to give rise to dynamical activity similar
in its spectral features to spontaneous local field potential
and EEG recordings. Equations (1)—(6) and their exten-
sions [14] are capable of reproducing the main features of
spontaneous human EEG [9]. In particular, autonomous
limit cycle and chaotic oscillatory activity in the alpha
band (8—13 Hz) can be easily produced. An example of
chaotic alpha is illustrated in Fig. 1.

Bifurcation analysis.—If excitatory input to inhibitory
neurons (p,;) is much larger than that to excitatory neurons
(pee) a stable equilibrium is the unique limit state of the
EEG model (1)—(6). If we increase p,,, this equilibrium
loses stability in a Hopf bifurcation and periodic motion
sets in with a frequency of about 11 Hz. For larger p,, the
fluctuations can become irregular; i.e., the limiting behav-
ior of the model is governed by a chaotic attractor. We can
distinguish between the different kinds of limiting behav-
ior by computing the largest Lyapunov exponent (LLE),
which is negative, zero, or positive for equilibria, (quasi)-
periodic fluctuations, and chaotic fluctuations, respec-
tively. Dafilis et al. [10] computed the LLE on a fine grid
of parameter values p,, and p,;. They found that a chaotic
attractor exists for a set of parameters which is fractal and
of positive measure.

Bifurcation analysis indicates that the boundary of the
chaotic parameter set is formed by infinitely many saddle-
node and period-doubling bifurcations. In Fig. 2 we have
superimposed a two-parameter continuation of a number of
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FIG. 2 (color). The largest Lyapunov exponent in color, repro-
duced from [10], with a superimposed two-parameter continu-
ation of saddle-node and period-doubling bifurcations. The
leftmost wedge of chaos terminates for negative values of the
exterior forcings, p.. and p,;. Numerical continuations were
performed using AUT097 [20].
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these bifurcations on the LLE computations. Indeed, these
curves largely form the boundaries between periodic be-
havior (green) and chaotic behavior (red). A remarkable
feature of the bifurcation curves is that they all converge to
a narrow wedge with its tip close to the origin. Thus, as will
become evident, they literally point to the crucial part of
the bifurcation diagram.

Figure 3(a) shows a schematic blowup of the bifurcation
diagram at the tip of the wedge. The blue line with the cusp
point ¢ separates regions with one and three equilibria. The
line of Hopf bifurcations terminates on this line at the
Bogdanov-Takens point BT. The green line which ema-
nates from BT denotes a homoclinic bifurcation. On an
open interval it coincides with the blue line of saddle-node
bifurcations. On this interval it denotes an orbit homoclinic
to a saddle node. The point GH is a generalized Hopf point,
where the Hopf bifurcation changes from sub- to super-
critical. From it emanates a line of saddle-node bifurca-
tions of periodic orbits. The wedge delimited by a solid and
a dashed line denotes the tip of the chaotic tongue (yellow-
red areas in Fig. 2).

The quintessence of bifurcation analysis is that we can
vary an increasing number of parameters to detect singu-
larities of higher codimension, which organize the quali-
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FIG. 3 (color). (a) Schematic bifurcation diagram at the tip of
the chaotic wedge. The abbreviations stand for Bogdanov-
Takens (BT), generalized Hopf (GH), and saddle node (SN).
(b) Continuation of the homoclinic orbit along the saddle-node
line, i.e., the blue line in (a). The horizontal axis shows the arc
length measured from n;. Between #; and ¢, multiple homoclinic
orbits coexist and Shilnikov’s saddle-node bifurcation takes
place. The inset shows a projection of four such orbits at n,.
The blue orbits lie in the center manifold, and the red orbit is
noncentral. The arrow shows the direction of the flow.

tative dynamics in a larger part of parameter space. Such
singularities are called organizing centers. In the EEG
model, we encounter such an organizing center when we
vary the time scale 7; as a third parameter. At
(Poes Poin 7)) = (—1.81 ms™!, —=2.21 ms™!, 17.4 ms) the
codimension-two points ¢, BT, and GH collapse onto a
degenerate Bogdanov-Takens point of codimension three.
It is known that the qualitative behavior near this singu-
larity can be of three different possible types, called the
saddle, focus, and elliptic case [15]. Following Ref. [16]
we computed the normal form and found the singularity to
be of the focus type. The qualitative dynamics for this case
agrees largely with Fig. 3(a). There is, however, one essen-
tial difference, which lies in the interval on which the
saddle-node and homoclinic bifurcations coincide. In the
normal form, this interval is bounded by the points n; and
n,, at which the homoclinic orbit is noncentral; i.e., it does
not lie in the local center manifold. The normal form is two
dimensional and allows only for one orbit homoclinic to
the saddle-node equilibrium. In contrast, the high-
dimensional EEG model allows for several coexisting
orbits. In order to see the difference in the bifurcation
diagrams, consider the continuation of the homoclinic orbit
along the saddle-node curve, starting from n;, as shown in
Fig. 3(b). Instead of terminating at n,, it overshoots this
point and folds back at #;, where the center-stable and
center-unstable manifolds of the saddle node have a tan-
gency. In fact, the curve of homoclinic orbits folds several
times before it terminates at n,, thereby creating an inter-
val, bounded by #; and #,, in which up to four homoclinic
orbits coexist.

Shilnikov proved that the coexistence of two or more
orbits homoclinic to a saddle node leads to the existence of
infinitely many periodic orbits, the hallmark of chaos [11].
In contrast to the homoclinic bifurcation of a saddle focus,
commonly referred to as the Shilnikov bifurcation, this
route to chaos has not been reported before in the analysis
of a physical model. In fact, Glendinning posed the iden-
tification of a model which produces Shilnikov’s saddle-
node bifurcation as an open problem in 1988 [17]. Since
then two studies have appeared in which models with the
desired properties are constructed [18,19]. The configura-
tion we find here is similar to that in Ref. [19], in which the
unfolding of a tangency like #; is studied. In that paper it is
also proved that the bifurcation structure of the infinitely
many periodic orbits is the same as that of the fixed points
of a perturbation of the Hénon map. Thus, we can expect to
find period-doubling cascades, infinitely many coexisting
attractors and other complex dynamics.

The route to chaos through Shilnikov’s saddle-node
bifurcation has codimension one; i.e., it takes place along
a line segment in two-parameter space as indicated in
Fig. 3(a). This line segment lies at the tip of the chaotic
tongue that is visualized in Fig. 2. As can be seen in
Fig. 3(b), this segment is rather short, too short in fact to
be visible on the scale of Fig. 2, and lies at small, negative
values of the forcing parameters p,, and p,;. Yet it organ-
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izes the bifurcation diagram, and thus the qualitative be-
havior of the EEG model, globally. The outer boundaries of
the chaotic tongue are formed by period-doubling and
saddle-node bifurcations of infinitely many periodic orbits.
These codimension-one bifurcations extend globally into
parameter space and form the boundaries between regular
and chaotic behavior.

We have performed extensive continuations of the piv-
otal bifurcations in Fig. 3(a) in the additional parameters of
the model. The organization of the bifurcation diagram
does not depend critically on these parameters in the larger
part of their physiological range, and thus we can conclude
that Shilnikov’s saddle-node bifurcation organizes the rele-
vant part of parameter space.

Conclusion.—Physiological models often have large
numbers of parameters, each with their natural range of
variability and uncertainty in measurement. Qualitative
behavior can vary wildly from one set of parameters to
another. Bifurcation analysis provides a way of unraveling
the organization of this complicated parameter space. The
study of boundaries (bifurcations) between different types
of behavior is a prerequisite both for the understanding of
brain function and for the application of control tech-
niques. Control can be aimed at preventing the brain
from entering an undesirable, pathological state such as a
seizure.

We have shown that the parameter space of a realistic
local model of EEG activity is organized by Shilnikov’s
saddle-node bifurcation, which gives rise to robust cha-
otic behavior. To our best knowledge this is the first time
this route to chaos has been found in any application or
physical theory. One may wonder why, when this is a
codimension-one phenomenon and should be as generic
in models with parameters, as Shilnikov’s saddle-focus
bifurcation is. One possible answer is that is hard to detect,
as a one-parameter bifurcation analysis does not give
enough information. A two-parameter analysis shows bi-
furcation curves of periodic orbits converging to a line of
saddle-node equilibria as the period diverges. Alterna-
tively, one can continue orbits homoclinic to a saddle
node and look for a tangency like #,.

It is interesting that this route to chaos occurs in the
vicinity of a degenerate Bogdanov-Takens point. The nor-
mal form of the latter is two dimensional and thus does not
admit chaotic behavior. Its unfolding, however, includes
orbits homoclinic to saddle nodes. How the bifurcation
diagram changes qualitatively as we move away from the
codimension three point in parameter space is the subject
of future research.

In order to study spatiotemporal cortical dynamics we
need to analyze the global EEG model [9]. The spatially
homogeneous modes of that model again display the bi-
furcations of Fig. 3 for physiologically interesting parame-
ter sets, implicating the route to chaos described in this
Letter to the time and space resolved model EEG.

Empirical EEG evidence will depend upon experimental
attempts to identify the cusp and Hopf bifurcations. The
results of our analysis suggest the need to look outside
normal physiological ranges, as parameter space searches
to date reveal most examples of plausible EEG dynamics
are associated with only one equilibrium point [14]. The
challenge for experimentalists will be to systematically
manipulate p,, and p,; to assume both positive and nega-
tive (unphysiological) values. In cortical slices this might
be achieved using M-type current (a slowly activating
persistent inward ionic membrane current) antagonists
(e.g., carbachol) and agonists (e.g., retigabine).
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