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Experiments involving phase coherent dynamics of networks of spins, such as echo experiments, will
only work if decoherence can be suppressed. We show here, by analyzing the particular example of a
crystalline network of Fe8 molecules, that most decoherence typically comes from pairwise interactions
(particularly dipolar interactions) between the spins, which cause ‘‘correlated errors.’’ However, at very
low T these are strongly suppressed. These results have important implications for the design of quantum
information processing systems using electronic spins.
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A worldwide effort is presently on to make nanoscale
solid-state qubits, whose purity and reproducibility can
easily be controlled. Microscopic spins, existing in mo-
lecular magnets [1], quantum dots [2], and semiconductors
[3], or in doped fullerenes [4], are a leading candidate for
this. In some of these systems (notably magnetic mole-
cules), the individual qubit properties are controlled by
chemistry instead of by nanoengineering (the ‘‘bottom-
up’’ approach [5] ), with spin Hamiltonians and intermo-
lecular spin couplings known and controlled to at least 3
significant figures. Spin also possesses other advantages—
information can be encoded in the topological spin phase,
with no need to move electrons around. Using spins for
quantum information will ultimately require (i) detecting
and manipulating single spins, and (ii) understanding and
controlling decoherence.

Single spins have been detected in a few ingenious
experiments [6], but we do not yet have a general-purpose,
single-spin detection or manipulation tool, analogous to
single atom STM/AFM. Consider, however, an array of
spins, each having a low-energy doublet of states whose
splitting is easily controlled by a magnetic field. Even
without addressing individual spins, one can still demon-
strate coherent qubit operation, using external ac fields to
promote resonant transitions between levels, and pulse
sequences (e.g., spin echo) to manipulate the phase and
measure decoherence rates. This approach is well known
for room-temperature bulk NMR quantum computing [7].
Here we treat the case of electronic spins which, unlike
nuclei, can be highly polarized at low T. We introduce a
formalism allowing the description of any set of spin qubits
obtained by truncation to low energy of a larger system,
showing how the low-T decoherence rate can be dramati-
cally reduced, even for a network of mutually coupled
qubits. To be specific, we treat the case where the qubit
is obtained by taking an anisotropic high-spin nanomagnet
[8] with easy axis ẑ, subject to a large transverse field H?
(Fig. 1), giving a low-energy doublet of states with easily
controllable energy separation, 2�0�H?� [Fig. 2(a)]. To
make quantitative and testable predictions, we then calcu-

late the spin-echo decay rate in a network of Fe8 mole-
cules. This is a clean, crystalline, and stoichiometric
chemical compound [8,9], where the interqubit and the
qubit-environment interactions are known accurately, and
it should be a good ‘‘benchmark’’ for quantitative test of
the theory.

(i) Effective Hamiltonian.—In a transverse field H? the
effective spin Hamiltonian of the Fe8 molecule, with total
spin S � 10, is controlled by crystal and external fields:
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FIG. 1 (color online). In a strong transverse field H?, the two
potential wells of an easy axis spin system approach each other
on the Bloch sphere. (a) The spin anisotropy energy for a Fe8

molecular spin with H? along ŷ, easy axis ẑ and hard axis x̂,
when �0Hy � 2:5 T. The low-lying states jZ�i are approxi-
mately localized in the two potential wells. The quantum-
mechanical eigenstates are symmetric and antisymmetric super-
positions of jZ�i (see text), separated by the tunneling gap 2�0.
(b) The resonance experimental setup and the spin states on the
Bloch sphere. (c) At T � �0=kB only the lowest-energy eigen-
state is populated, jSi � 2�1=2�jZ�i � jZ�i�. A short � wave
pulse prepares the system in the jZ�i state (�=2 rotation,
corresponding to 1=4 of a Rabi oscillation). The spin then
tunnels coherently between jZ�i and jZ�i at a frequency
2�0=@. The effect of static inhomogeneities in �0 can be
compensated by a � pulse in a spin-echo sequence (not shown).
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The easy and hard axes are along ẑ and x̂, respectively; here
D=kB � 0:23 K, E=kB � 0:094 K, K?4 =kB � �3:28	
10�5 K, � � ge�B�o, and ge 
 2 is the isotropic g factor
of the spin-10 moment [10]. Henceforth we orient the
external field along ŷ, i.e., H? ! Hy; this can tune the
tunneling splitting 2�0 between the two lowest eigenstates
over 7 orders of magnitude [Fig. 2(a)]. Higher excited
states are separated from the lowest doublet by a large
gap �0 
 5 K, and for kBT � �0 the giant spin can be
truncated to an effective spin-1=2.

Given the two lowest doublet eigenstates, jS�H?�i and
jA�H?�i, we write the quasilocalized states in the minima
of the energy potential as jZ�i � 2�1=2�jSi � jAi�
[Fig. 1(a)]. Defining the states jX�i � 2�1=2�jSi �
ijAi�, we see that jX�i and jZ�i have the maximum
(positive or negative) spin expectation values along x̂ or ẑ
within the 2-dimensional subspace of the qubit, where jSi
and jAi are the basis states. All of these Fe8 spin states can
be calculated by numerical diagonalization of (1). We then
define qubit spin-1=2 operators ŝx, ŝy, ŝz, such that ŝzjSi �
1=2jSi, etc.

To describe the magnetic moment of the truncated spin
qubit we introduce an effective g tensor ~g, also operating in
the qubit subspace, and defined so that the qubit magnetic
moment [11] ms

��H� � �B
P
�~g���H�s�. In the geometry

studied here, with H along ŷ, ~g is diagonal, with compo-
nents:
 

~gx � ge�hX�jSxjX�i � hX�jSxjX�i�; (2a)

~gy � ge�hSjSyjSi � hAjSyjAi�; (2b)

~gz � ge�hZ�jSzjZ�i � hZ�jSzjZ�i�: (2c)

Numerical evaluation of ~g shows it to be highly anisotropic
and field dependent [Fig. 2(b)].

Consider now two spin-10 Fe8 molecules. The standard
dipolar interaction 1

2

P
i�j

P
�;� U

ij
��Si�S

j
� has strength

Ud � �0g2
e�2

BS
2=4�V c � 0:127 K between nearest

neighbors (here V c is the volume of the unit cell).
However, we are interested in the effective interaction
between the qubits—this acquires a field-dependent and
highly anisotropic tensor form ~Vij�H?� � ~giUij~gj when
written in the truncated qubit basis. There may also be
exchange interactions [12] between the molecules—these,
however, have never been observed in Fe8. Thus our low-T
Hamiltonian for the dipole-interacting molecules becomes:

 Heff � �
X
i

2�i
0�H?�s

i
z �

1

2

X
i�j

X
�;��x;y;z

~Vij���H?�si�s
j
�;

(3)

where the spins form a triclinic lattice [9], and we choose
the qubit ẑ axis of quantization to be along the field (i.e.,
along the original ŷ axis). The full Hamiltonian also in-
cludes local spin-phonon and hyperfine couplings, whose
detailed form we will not need here.

(ii) Decoherence.—Most general discussions of deco-
herence in qubit systems concentrate on ‘‘1-qubit’’ deco-
herence, i.e., that coming from the interactions of
individual qubits with the environment [13–15]. In an
insulating magnetic system like Fe8 both nuclear spins
and phonons will contribute to 1-qubit decoherence [16].
However, this is not the only possible decoherence source.
In a multiqubit system one can have ‘‘correlated errors,’’
from pairwise qubit interactions. A few analyses of this
have been done [17]; depending on what model is chosen,
these indicate that when qubits couple to the same bath,
correlated decoherence is very serious, and may prevent
error correcting codes from operating.

In the setup imagined here, decoherence will show up in
measurements of the dephasing time, T2. We define the
dimensionless decoherence rate as �� � @=T2�0 (the ‘‘co-
herence Q factor’’ is then Q� � �=��). We start by con-
sidering the role of dipolar interactions—these are
important because they exist in all spin systems, and cause
correlated errors via pairwise spin interactions, exciting
internal modes of the spin system (i.e., no external environ-
ment). There are two ways to look at their contribution to
��. First, as a dephasing from dipole-mediated pair-flip
processes, which in a resonance or echo experiment gives a
homogenous absorption linewidth h�!�i � T�1

2 . Second,
as a scattering of the uniform spin precession mode off
thermal magnons. In what follows we will assume that
Ud=2�0 � 1; i.e., the dipolar interaction is much less
than the tunneling splitting—only then will dipolar deco-
herence be small enough to make an experiment worth-
while (in Fe8 at, e.g., �0Hy � 2:5 T we have
Ud=2�0 
 0:16). Since any reliable measurement of the
decoherence rate will involve time-resolved spin-echo ex-
periments, we neglect static inhomogeneous broadening in
the calculations.

IfUd=2�0 � 1 and kBT * �0, the contribution �vV
� due

to pair-flip processes can be expressed in terms of the
second moment of the homogenous absorption line,
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FIG. 2 (color online). Fe8 in a transverse field Hy:
(a) tunneling splitting 2�0 of the lowest doublet, as a function
of Hy. (b) Effective g factors for Fe8 as a function of the ratio
�0�Hy�=�0. In both figures, the values at �0Hy � 2:5 T are
indicated by a black arrow. Our decoherence rate calculations are
valid when �0 � Ud, and do not apply in the gray areas shown.
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2 , by incorporating the ~g factors in the van
Vleck (vV) analysis [18]:
 

��vV
� �

2 
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1� tanh2
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Aij

yy
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�
2
; (4a)

Aij
yy �

Ud

�2geS�2
�2~g2

y � ~g2
z�R

ij
yy � �~g2

x � ~g2
z�R

ij
xx�; (4b)

with Rij
�� �V c�jrijj2��� � 3rij�r

ij
� �=jrijj5. The next

term, neglected in Eq. (4a), is �O�Ud=�0�. This approach
fails when kBT � �0, since the line assumes a Lorentzian
shape, where T2 is not related to h�!2

�i.
Consider now magnon-mediated dipolar decoherence.

In the experimental setup we imagine here, a resonant
tipping pulse applied to the spin ensemble causes a sub-
sequent uniform spin precession (i.e., coherent tunneling of
the spins in the crystal between states jZ�i and jZ�i). This
is equivalent, in our effective spin language, to a magnon
with wave vector q � 0, with gapped energy @!0 � 2�0

when �0 � Ud. However, the dipolar interaction couples
this magnon to other magnons [19]. The magnon spectrum
!q is calculated using standard Holstein-Primakoff trans-
formations [20] applied to Eq. (3). The lowest-order pro-
cesses conserving both energy and momentum here are 4-
magnon processes [cf. Fig. 3(b)]; for kBT � Ud these are
the only ones that contribute significantly [6th and higher-
order processes are �O�kBT=Ud�

2 relative to these].
Selecting the T2 terms where the total spin polarization is
unchanged, we derive a magnon contribution �m� to ��
given (again, for �0 � Ud) by:

 �m� �
2�
@�0

X
qq0
j��4�qq0 j

2F  �nq���!0 �!q �!q0 �!q�q0 �:

(5)

Here the relevant 4-magnon matrix element is ��4�qq0 �

�1=4N�K�4��q;q0� �K�4��0;q0��, where K�4��q;q0� �
2Kyy�q� q0� � Kzz�q� � Kxx�q� and

 K���q� � Ud
~g�~g�
g2
eS

2

X
l2V

R0l
��eiq�r

l
: (6)

F  �nq� is the usual Bose statistical weighting of the mag-

non thermal occupation numbers �nq, and @!q �

�A2
q � 4jBqj

2�1=2 with Aq � 2�0 �
1
4 2Kyy�0� � Kzz�q� �

Kxx�q�� and Bq �
1
8 Kzz�q� � Kxx�q� � 2iKxz�q�� for any

q. The magnon analysis requires spin polarization close to
unity, i.e., kBT < 2�0, and therefore complements the van
Vleck approach from the low-T side. It is interesting to
notice that the two methods yield different T dependencies,
� exp���0=kBT� for �vV

� and � exp��2�0=kBT� for �m�.
The crossover occurs around kBT � �0, where the line
shape turns from Gaussian (kBT > �0) to Lorentzian
(kBT < �0). Full quantitative details will appear in a
long paper [21].

To these 2-qubit decoherence processes one must also
add 1-qubit decoherence processes to find the total �� that
would be measured in an experiment. The contributions
from interaction with phonons and nuclear spins have been
calculated for Fe8 elsewhere [16]. In large transverse fields
nuclear spins give a rate �NS

� � E2
0=2�2

0, where E0 is the
half-width of the Gaussian multiplet of nuclear-spin states
coupled to the qubit. The phonon decoherence rate is given
for Fe8 by [22]:

 �ph
� �

M2
AS�2

0

��c5
s@

3
coth

�
�0

kBT

�
; (7)

where M2
AS�Hy� 


4
3D

2jhAjSySz � SzSyjSij2, with den-
sity � � 1920 kg=m3 and sound velocity cs � 1386 m=s.
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FIG. 3. Feynman self-energy graphs for the q � 0 uniform
precession mode, interacting with magnon excitations. We de-
pict (a) a 3-magnon process, which is ruled out by energy
conservation, (b) a 4-magnon process, and (c) a 6-magnon
process.
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FIG. 4 (color online). Dimensionless decoherence rates �� �
@=T2�0 as a function of tunneling gap 2�0 in Fe8, at the
indicated T. Thin lines: �vV

� arising from pair-flip processes,
Eq. (4a). We omit �vV

� at T � 0:05 K� Ud=kB. Thick lines: �m�
from magnon scattering, Eq. (5). The gap between the �vV

� and
�m� lines is the crossover region between the validity of the two
methods. The dashed and dotted lines show, respectively, the
phonon [�ph

� , Eq. (7)] and nuclear (�NS
� ) decoherence rates at

T � 0:05 K. The arrow indicates the optimal operation point of
the Fe8 spin qubit at T � 0:05 K. Inset: �vV

� and �m� for an
isotropic spin-1=2 on the same Fe8 lattice, as a function of the
Zeeman gap ge�B�0Hy.
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Figure 4 summarizes the results of all these calculations.
Except at very low T and large �0, dipolar decoherence
completely dominates over nuclear and phonon decoher-
ence. The optimal operating point at T � 0:05 K, having
minimum total decoherence, is found where 2�0 
 1 K 

20 GHz, at �0Hy 
 2:6 T; here the decoherence quality
factor is Q� � 107, with a coherence time T2 � 1 ms.

Since �ph
� / coth��0=kBT� is essentially T independent

in this regime, while dipolar contributions to �� still
vary strongly, a further decrease in temperature would
not substantially decrease ��, but would allow operation
at lower frequencies. It is instructive to compare the results
for the Fe8 qubit, with the case of a fictitious isotropic
spin-1=2 on the same lattice (inset Fig. 4), obtained by
setting ~gx � ~gy � ~gz � ge and replacing 2�0 by
ge�B�0Hy in all our formulas. We then deal with simple
Larmor precession instead of spin tunneling. There is a
clear reduction in ��, but no trivial proportionality factor,
because of the strong variation of ~g��Hy� in the Fe8 qubit
[Fig. 2(b)].

We now consider the more general implications of these
results. Note first that even for the setup considered here,
correlated errors cause large decoherence—we suspect
they will even more strongly affect higher-order entangle-
ment between the qubits. This is in line with the results in
the quantum information literature [17], but the concrete
calculation here reveals a surprising feature, viz., that at
very low T, the contribution of correlated errors can be
made much smaller then the single-qubit errors coming
from hyperfine and spin-phonon couplings.

Dipolar interactions are dangerous for spin qubit design,
but they are hard to screen. One way to reduce their effects
(apart from going to very low T [23] ) would be to go to
lower dimensional spin networks; recent progress in at-
taching and assembling nanomagnets on surfaces [24], or
even in chain structures [25] might then yield viable archi-
tectures. Designs in which dipolar interqubit couplings can
be made small—e.g., low-spin systems like V15 or Cr7Ni
[26]—and where the interqubit couplings responsible for
information manipulation can be switched on and off, are
clearly favored.

We believe that we have captured the intrinsic decoher-
ence processes in networks of coupled spin qubits, extend-
ing to the case where the qubit is the low-energy truncation
of a larger system. Spin-echo experiments on well-
characterized systems like Fe8 would give a stringent test
of the theory. Perhaps more important, such experiments
would allow exploration of different spin network archi-
tectures, even before the manipulation of individual spins
in such networks becomes possible.
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[25] R. Clérac, H. Miyasaka, M. Yamashita, and C. Coulon,
J. Am. Chem. Soc. 124, 12 837 (2002).

[26] I. Chiorescu et al., Phys. Rev. Lett. 85, 4807 (2000);
F. Troiani et al., Phys. Rev. Lett. 94, 207208 (2005).

PRL 97, 207206 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 NOVEMBER 2006

207206-4


