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Instability of the excitation spectrum of an ordered noncollinear Heisenberg antiferromagnet with
respect to spontaneous two-magnon decays is investigated. We use a spin-1=2 antiferromagnet on a
triangular lattice as an example and examine the characteristic long- and short-wavelength features of its
zero-temperature spectrum within the 1=S approximation. The kinematic conditions are shown to be
crucial for the existence of decays and for overall properties of the spectrum. The XXZ and the J-J
generalizations of the model, as well as the role of higher-order corrections, are discussed.
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A quantum many-body system with a nonconserved
number of particles may have cubic vertices, which de-
scribe interaction between one- and two-particle states. In
crystals, such anharmonicities lead to finite thermal con-
ductivity by phonons [1]. In the superfluid 4He, the cubic
interaction between quasiparticles results in a complete
wipeout of the single-particle branch at energies larger
than twice the roton energy [2].

In quantum magnets with collinear spin configuration,
e.g., in antiferromagnets (AFs) on a bipartite lattice, cubic
terms are absent and anharmonicities are of higher order
[3]. The cubic terms can appear due to dipolar interactions
[4], but in magnetic insulators those are weak and usually
can be neglected. It has been gradually realized that sub-
stantial cubic interactions should exist in the noncollinear
AFs [5–8]. Qualitatively, such cubic anharmonic terms
arise due to coupling of the transverse (one-magnon) and
the longitudinal (two-magnon) fluctuations in these
systems.

The noncollinearity of an antiferromagnetic spin con-
figuration can be induced either by the external magnetic
field [8] or by the frustrating effect of the lattice [e.g., in the
triangular lattice (TL), spins form the so-called 120� struc-
ture [5,7]]. In the former case, spontaneous decays are
allowed above a threshold field H�, such that magnons
become strongly damped throughout the Brillouin zone
(BZ) [9]. On the other hand, the role of magnon interac-
tions in the spectra of frustrated AFs is not well understood.
The earlier work on TLAFs [7] has discussed only renor-
malization of the spin-wave velocities. The recent series
expansion study [10] has found a substantial deviation of
the spectrum from the linear spin-wave theory (LSWT) and
interpreted it as a sign of spinons. The latest work [11] has
questioned this hypothesis by showing that 1=S expansion
strongly modifies the LSWT spectrum, leading to an over-
all agreement with the numerical data. However, the sub-
ject of spontaneous decays has been hardly touched upon.
Astonishingly, instability of the single-particle spectrum in
the presence of a well-defined, magnetically ordered

ground state is, perhaps, the single most striking qualitative
difference of the noncollinear AFs from the collinear ones.

In this Letter, we shall study magnon decay in noncol-
linear quantum AFs at T � 0 using an example of the
Heisenberg AF on a TL. The noncollinearity is necessary
but not sufficient for decays. In addition, the energy and
momentum must be conserved within a decay process
(kinematic conditions). Thus, the decays are determined,
in part, by the shape of the single-particle dispersion that
may, or may not, allow spontaneous decays. We analyze
singularities in the two-magnon continuum that outline
instability regions or lead to discontinuities in the single-
particle spectrum. Our long-wavelength analysis yields
definite asymptotic statements regarding the lifetime of
magnetic excitations. We discuss briefly the XXZ and
J-J0 models where noncollinearity is also present.

We begin by rewriting the spin-S, nearest-neighbor
Heisenberg Hamiltonian for the TLAF into the local rotat-
ing frame associated with the classical 120� structure of
the spins and proceed with the standard Holstein-Primakoff
transformation of the spin operators into bosons followed
by the Bogolyubov transformation diagonalizing the har-
monic part of the bosonic Hamiltonian. This procedure
leads to the following Hamiltonian:
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X
k
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where the ellipses stand for the classical energy, other
3-boson terms that do not lead to decays, 4-boson, and
the higher-order terms. Although we will need some of
these other terms for the 1=S expansion below, Eq. (1) will
suffice for the purpose of this Letter. All of the necessary
terms can be found in Refs. [5,7]. The LSWT magnon
energy and the 3-boson vertex in Eq. (1) are given by:

 "k � 3JS
���������������������������������������
�1� �k��1� 2�k�

q
; (2)
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where J is the exchange constant, q0 �k�q, f1;2;3�
��1�u1�v1��u2u3�v2v3�, g1;2;3� ��1�u1�v1��u2v3�
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Bogolyubov coefficients: 2u2
i � 1 � 3JS�1� 1

2�i�="i,
u2
i � v

2
i � 1.

Kinematics: long-wavelength limit.—The magnon
branch in Eq. (2) has three zero-energy modes: k � 0
and k � 
Q � �
 4

3�; 0�, points �, and K (K’s) in
Fig. 1, respectively. In contrast with a square-lattice AF,
velocities of these Goldstone modes are different: c0 ���������

3=4
p

and c
Q �
��������
3=8

p
(in units of 3JSa). This immedi-

ately implies that excitations with k! 0 are kinematically
unstable towards decays into �q;q0� ! �Q;�Q� ones, in
close analogy with a decay of a longitudinal phonon into
two transverse ones [1]. Clearly, such decays are immune
to 1=S corrections as long as velocities remain different.
This picture is pertinent to all other noncollinear AF with
more than one Goldstone mode.

For magnons at small ~k � k�Q, there exists a more
subtle reason for decays. Instead of the usual convex and
isotropic form, the magnon energy is nonanalytic with
varying convexity: "k � cQ~k�1� �’~k�, where �’ �
cos3’. This form together with the commensurability of
the ordering vector creates kinematic conditions for the
decays from the steeper side of the energy cone at k! Q
into the less steeper sides at q;q0 ! �Q. Thus, magnons
near the Q point are unstable only in a range of angles.
Although such conditions are more delicate, it is very
unlikely that the higher-order terms would selectively can-
cel the nonanalyticity. Therefore, the k! Q decays
should be prominent in the TLAF.

Kinematics: full BZ.—In the model (1), an excitation
with the momentum k is unstable if the minimum energy
of the two-particle continuum Ek;q � "q � "k�q is lower

than "k. Then the boundary between stable and unstable
excitations is where such a minimum crosses the single-
particle branch and the decay condition Ek;q � "k is first
met. Thus, to find these boundaries, one should analyze the
extrema of the continuum. For a gapless spectrum, there
can be several solutions as we show for the TLAF:

(a) Decay with emission of a q � 0 magnon.—Ek;0 
"k for any k but it never crosses the magnon branch.

(b) Decay with emission of q � 
Q magnons.—The
equation that defines the boundary is Ek;Q  "k
Q � "k
and its solution is shown by the dotted line in Fig. 1. The
shaded area is where magnon decays are allowed. It can be
shown that Ek;Q corresponds to an absolute minimum of
the continuum within the shaded area. In accord with our
long-wavelength discussion, the area around k � 0 is en-
closed and it is a finite segment in the vicinity of the Q
point where decays are allowed.

(c) Decay into two identical magnons.—The two-
magnon continuum has extrema that are found from
@Ek;q=@q � 0 [2,9]. This condition means that the prod-
ucts of decay have equal velocities. The simplest way to
satisfy that is to assume that their momenta are also equal.
This is fulfilled automatically if q � �k�Gi�=2, where
Gi is one of the two reciprocal lattice vectors of a TL,
G1 � �2�; 2�=

���
3
p
� and G2 � �0; 4�=

���
3
p
�. The curves for

the solution of "k � 2"�k�Gi�=2 are shown in Fig. 1 by the
solid lines. Note that in the case of the TLAF these extrema
are not the minima, but the saddle points. Nevertheless,
they lead to essential singularities in the spectrum as will
be discussed below.

(d) Decay into nonidentical magnons.—In a more gen-
eral situation, the decay products with the same velocities
may have different momenta and energies "k�q � "q.
Then one has to solve the decay condition Ek;q � "k

together with the extremum condition @Ek;q=@q � 0.
The solution is shown in Fig. 1 by the dashed line. As in
(c), corresponding extrema are the saddle points.

Thus, the area of two-magnon decays in Fig. 1 is deter-
mined by the solution (b) as it encloses regions (c) and (d).
This may not be the case for other systems (see the XXZ
model below). Generally, the area of the decays is a union
of the regions given by (b), (c), and (d).

Spectrum: 1=S corrections.—The 1=S correction to the
TLAF magnon spectrum is given by the one-loop self-
energy diagrams from the 3-boson terms and the
!-independent 4-boson contribution �"k��k�"k���"

�4�
k :

 �k�!� �
1

2

X
q

�
jVk;qj

2

D�k �!�
�
j ~Vk;qj

2

D�k �!�

�
; (4)

 �"�4�k � 9J2S�A1�2
k � A2�k � A3	=4"k; (5)

where D�k �!� � !� "q � "k�q 
 i0, the ‘‘source’’

3-boson vertex is ~Vk;q � 3iJ
�����������
3S=2

p
�gq;q0;k � gq0;q;k �

gk;q;q0 	, and A1 � �4c0 � c1 � 5c2 � 4�, A2 � ��2c0 �

c1 � c2 � 2�, and A3 � �2c0 � 2c1 � 4c2 � 2�. Here we

 Γ K

K’

Y
M

FIG. 1 (color online). Brillouin zone of the TL. The shaded
area corresponds to the region where spontaneous two-magnon
decays are allowed. � � �0; 0�, K � �4�=3; 0�, K0 �
�2�=3; 2�=

���
3
p
�, Y � �0; �=

���
3
p
�, and M � ��;�=

���
3
p
� points

are highlighted. The lines correspond to the extrema in the
two-magnon continuum described in the text.
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have defined the following constants: cn � 3JS
P

k�
n
k="k,

c0 � 1:574 733, c1 � �0:104 254, and c2 � 0:344 446.
We calculate the spectrum ~"k � "k � �"k for S � 1=2

using the numerical integration in Eq. (4). Figure 2 shows
~"k for two representative directions in the BZ together with
the LSWT spectrum and the bottom of the two-magnon
continuum. The 1=S renormalization of the magnon spec-
trum is quite substantial; see also [11]. This is because the
continuum strongly overlaps with, or, for the k areas out-
side the decay region, has significant weight in a close
vicinity of, the magnon branch. Such a purely kinematic
effect explains a mystifying dichotomy: Quantum correc-
tions to the spectrum in the TLAF are large compared to
the square-lattice AF, while the ordered moments are about
the same [5,7,10].

Decays: long-wavelength limit.—The decay vertex (3)
for magnons near the � point scales as Vk;Q�q / �q

0 �

q�
������������
k=qq0

p
, for small q and q0 � jk� qj. A simple power

counting yields the leading term in the imaginary part of
the self-energy. In a typical decay q, q0 � k, giving for the
decay probability: jVk;Q�qj

2 / k. Since there is no con-
straint on the angle between k and q, the 2D phase volume
restricted by the energy conservation contributes another
factor of k, such that Imf�k�"k�g / k

2. A more detailed
analytical calculation yields Imf�k�"k�g � �0:789Jk2, in
agreement with the data in Fig. 2.

The decay vertex for k! Q magnon has a more con-
ventional scaling: VQ�k;�Q�q /

����������
kqq0

p
, so the decay

probability is jVj2 / k3. Because of a constraint on the
angle between k and q, the decay surface in q space is a

cigar-shaped ellipse with length �k and width �k3=2 that
makes the restricted phase volume of decays to scale as
k1=2. This results in a nontrivial k7=2 scaling of the decay
rate. Numerically, along the �K line Imf�k�"k�g �

�1:2Jk7=2. In a similar manner, one can show that at the
boundary of decay region (e.g., point kb in Fig. 2) the decay
rate grows as Imf�k�"k�g / �k� kb�2.

Spectrum: singularities due to decays.—A remarkable
feature of the spectrum in Fig. 2 is the singularities in the
real and the imaginary parts of ~"k. Clearly, they are due to
spontaneous decay, as it is only the decay term in (4) that
contributes to the imaginary part.

A close inspection shows that k0 and k� singularity
points in Fig. 2 correspond exactly to the intersection of
�K and YM lines with the saddle points in the continuum
(solid and dashed lines in Fig. 1). The ‘‘strong’’ (k�) and
‘‘weak’’ (k0) singularities correspond to decays into iden-
tical and nonidentical magnons, solutions (c) and (d)
above, respectively. Figure 3 shows the decay contours,
i.e., 1D surfaces in a 2D q space into which a magnon with
the momentum k can decay, for k0 and k� saddle points
along the �K line. In both cases, these contours undergo
topological transition.

Close to such a transition, the denominator in Eq. (4) is
expanded as "k � Ek;q � �v1 � v2��k� �xq2

x � �yq2
y,

v1 and v2 are velocities of the initial and final magnons,
respectively, �i are constants, and �k � k� k�, k� is the
saddle point. Integration in Eq. (4) yields a logarithmic
singularity in the imaginary part Imf�kg / � lnj�=�kj
and a concomitant finite jump in the real part of the self-
energy Ref�kg / sgn��k�, � is a cutoff. The cutoff (size of
the ‘‘bubble’’ in Fig. 3) is small in the case of weak
singularities, which explains the weakness of them. The
logarithmic form agrees perfectly with the data in Fig. 2.
Overall, our analysis of the long- and short-wavelength
behavior gives complete understanding of the 1=S results
for the magnon spectrum in TLAF.

An important question is whether the singularities in the
spectrum will withstand the higher-order treatment. The
first possibility is when at least one of the final magnons is
itself unstable. Then the log-singularity will be cut off by
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FIG. 2 (color online). Upper row: Magnon dispersion along the
lines �K and YM in the BZ; see Fig. 1. The dashed lines are the
LSWT spectrum; the dotted line is the bottom of the LSWT two-
magnon continuum, and the solid lines are the spectrum with the
1=S correction. Lower row: Imaginary part of the 1=S magnon
energy along the same lines. kb is the intersection point of the
one-magnon branch with the two-magnon continuum along the
YM line. k� and k0 points correspond to the singularities dis-
cussed in text.
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FIG. 3 (color online). The upper right parts of the BZ in the q
space. The decay contours for k � k0 (left) and k � k� (right)
along the �K line are shown. Both k points correspond to the
saddle points in the two-magnon continuum. The corresponding
q contours undergo a topological transition.
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the decay rate of the final magnon, and Imf�kgwill have, at
most, a weak maximum near the topological transition. For
the TLAF, such a scenario is realized for a large fraction of
the weak singularities (k0 in Fig. 2). However, all of the
strong singularities (k� in Fig. 2) and some of the weak
ones belong to another class, in which both magnons
created in the decay are stable. We have checked that the
first-order 1=S corrections do not shift appreciably the
instability boundaries in Fig. 1. Hence, at the saddle points,
the logarithmic divergence of the one-loop diagrams will
persist even for the renormalized spectrum. In such a case,
vertex corrections become important [2]. Summation of an
infinite series of loop diagrams yields the self-energy from
the decay processes near the singular point: �k�!� ’
ia= lnj�!� v2�kj, with a > 0. One may conclude that
the decay rate becomes vanishingly small as �!;�k! 0.
This is, however, not true. An attempt to solve Dyson’s
equation G�1

k �!� � 0 with this self-energy yields no solu-
tion for ! near the real axis. Therefore, the decay rate of
quasiparticles around the solid lines in Fig. 1 will remain
large and quasiparticle peaks will be strongly suppressed
even for large S.

Other models on a TL.—Two straightforward general-
izations of the Heisenberg model on a TL are (i) the
anisotropic XXZ model with � � Jz=Jxy < 1 and (ii) the
J-J0 model for an orthorhombically distorted triangular
lattice with one of the interactions within the triangle (J)
stronger than the other two (J0).

In the spectrum of the XXZ model, magnons at Q are
gapped with the gap "Q /

�������������
1� �
p

at � & 1. This has two
immediate consequences: (a) Magnons at k! 0 are stable
up to "k � 2"Q and (b) Q magnons become stable them-
selves. Thus, the star-shaped decay region in Fig. 1 devel-
ops a hole in the middle and has vertices shrunk and
rounded. The evolution of the decay boundary with �<
1 is nontrivial. Initially, the emission of a Q magnon re-
mains an absolute minimum of the two-magnon continuum
for most of the decay region. At�1 � 0:993, the decay into
nonequivalent magnons switches from being a line of
saddle points into the absolute minima of the continuum
and takes over the decay boundary. Figure 4 shows the
instability and the singularity lines for a representative
value � � 0:96. Further decrease of � completely elimi-

nates the decay region at around � � 0:92. Thus, magnon
decays are present in an anisotropic TLAF but only at not
too large anisotropies.

For the J-J0 model, the Goldstone modes at k � 
Q are
preserved but the ordering wave vector Q becomes incom-
mensurate. This does not change the kinematics of the
decays for the k! 0 magnons but forbids the decays
from the vicinity of the Q point into the vicinity of �Q
point as the quasimomentum cannot be conserved. How-
ever, the decays in the vicinity of (inequivalent now) K0

points are still allowed. Overall, the decay region grows
with the decrease of J0. At J0 � 0:34J, relevant to
Cs2CuCl4 [12], the decay region covers most of the BZ.
With the decrease of J0, the LSWT single-magnon disper-
sion develops a low-energy branch in the direction perpen-
dicular to the strong J. That makes the rest of the spectrum
prone to decays into it.

Conclusions.—We have shown that magnon decays
must be prominent in a wide class of noncollinear AFs.
We calculated the decay rate in the spin-1=2 TLAF within
the spin-wave theory. In the long-wavelength limit, the
lifetime of low-energy excitations is predicted to exhibit
a nontrivial scaling. For the short-wavelength magnons, the
decay rate is large, 2Imf~"kg � 0:4Ref~"kg, in a substantial
part of the BZ. Topological transitions of the decay surface
also lead to strong singularities in the spectrum that remain
essential even for large values of spin. Therefore, excita-
tions in ordered, spin-S AFs may not necessarily be well-
defined for all wave vectors.
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α = 0.96 J’ = 0.9 J

FIG. 4 (color online). Decay regions and singularity lines for
the XXZ model � � 0:96 (left) and the J-J0 model J0=J � 0:9
(right). The definition of lines is the same as in Fig. 1.
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