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General Properties of Local Plasmons in Metal Nanostructures

Feng Wang and Y. Ron Shen

Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA

Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 18 June 2006; published 17 November 2006)

Under the quasistatic approximation, the characteristics of a local plasmon resonance of a metal
nanostructure exhibit several general properties. The resonance frequency depends on the fraction of
plasmon energy residing in the metal through the real dielectric function of the metal. For a given resonant
frequency, the Q factor of the resonance is determined only by the complex dielectric function of the metal
material, independent of the nanostructure form or the dielectric environment. A simple result describing
the effect of optical gain on the Q factor is also obtained.
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Plasmon resonance in nanoscale metal structures has
been a focus of intensive research activity in recent years
[1-4]. The increasing interests in local plasmons stem both
from the existence of a large variety of metal nanostruc-
tures, either from chemical synthesis [5—8] or nanofabri-
cation [9-11], and their unique properties. It has been
shown that the metal structures can dramatically enhance
the local electrical field by concentrating electromagnetic
energies into subwavelength volumes. This could lead to a
wide spectrum of applications, ranging from single mole-
cule Raman scattering [12,13] to sub-diffraction limit
imaging [14,15] to efficient optical mixing [11,16]. Many
ingenious designs of metal nanostructures have been pro-
posed to achieve these goals. In order to gain further insight
on local plasmon resonances, one would like to know more
about their general behavior without referring to the spe-
cific nanostructures.

In this Letter, we explore properties of local plasmon
resonance common to all metal nanostructures by examin-
ing energy relations involving such resonance. As is true
for many physical processes, an energy perspective fre-
quently yields simple but general and useful results. We
show that in the quasistatic limit, the energy of the local
plasmon field within the metal part of a nanostructure is
always larger than that in the surrounding media. The ratio
of the two has a simple exclusive dependence on the real
dielectric functions of the metals at the resonant frequency.
As such, the plasmon resonance frequency of a nanostruc-
ture, being the implicit variable in the metal dielectric
functions, can be tuned through varying this energy ratio.
We further show that for a given resonance frequency, the
quality factor (Q factor) of the plasmon resonance should
depend solely on the complex dielectric function of the
material, independent of the geometry of the nanostructure.
The energy relation also allows us to set a simple criterion
necessary for optical gain in the dielectric medium to
compensate the loss in the metal part of a nanostructure.

In analogy to the optical resonances in microcavities,
local plasmons can be regarded as local modes originating
from coupling between the electromagnetic field and ex-
citation in metal. More formally, they are localized eigen-
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modes of the Maxwell equations and their resonant width
is characterized by the associated Q factor. We consider
here a metal nanostructure of arbitrary form. The field
distribution spreads over metal and dielectric parts, both
of which may consist of multiple components and compo-
sitions. On the nanoscale, the optical wave retardation
effect is small and the problem can be treated with quasi-
static approximation. It amounts to solving Maxwell equa-
tions in the lowest order with the time-dependent terms in
the equations taken as perturbation. In the formalism, the
Maxwell equations are written as

V-B=0,

>

V-D=0,

V X B = (n/c)aD/ar),
VX E=—(n/c)0B/an),

with D = gE, ¢ = &' + ig” and the perturbative solution
has the form

E=E9 + nEY + o(»?);
B =B+ nBY + 0(n?).

Here, 7 is an expansion parameter introduced to keep
track of the orders of perturbation and is set to 1 in the end
result. The optical response is characterized solely by the
dielectric constant & that is position dependent and the
magnetic permittivity is taken to be 1. In the lowest order,

we have only EO % 6 i.e., the local plasmon resonance is
purely electric in the quasistatic limit. A criterion for the
validity of quasistatic approximation is that the ratio of
nanostructure dimension L to reduced wavelength A is
much smaller than 1 (L/A = kL < 1). For larger nano-
structures with L/A ~ 1, the results from quasistatic ap-
proximation can still serve as guidance.

We examine here general energy relations of local plas-
mon modes in the quasistatic limit. We are interested in the
frequency region below the bulk plasma frequency of the
low-loss metal so that &/, <0, but d(‘;—j) >0 and &) <
lel,|. We first show that time-averaged electromagnetic
(em) energy, U,,, residing in the metal part is always larger
than time-averaged em energy, U, contained in the dielec-
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tric part of a nanostructure system, with U,, and U, having
the expressions [17]

o d(we,
o=, Mg
;T metal w (1)
T = j SdEde.
87T ‘Q'dielec[ric

Here, for simplicity, the dielectric medium is assumed to be
lossless and have negligible dispersion, and ()., and
Q gielecric denote the volumes occupied by the metal and
the dielectric medium, respectively.

For the proof, we notice that for any local field in the

quasistatic limit, VX E=0and E= —V®, we have
f a@ﬁw:] E-Dav = —] Vo - Bav
Q Q Q
— f [V - (®D) — B - D)V
Q

=—¢ ®D-i)ds=0,
Sa

where () refers to a large volume enclosing the nanostruc-
ture. Its surface S, is far away from the local resonant field
range of the nanostructure, so that in the quasistatic limit,
we have D = 0 at S;,. The equation holds true in general
for any local modes within quasistatic approximation. One
observes that for a nontrivial solution of the electric field to
exist, € cannot be positive everywhere. This points to the
fact that metal or other materials with negative dielectric
constants are required for nanostructure to have local
resonance (with localization much smaller than wave-
length). With Q divided into Qe and Qgielectrics We
have, from [, E - DdV = 0, the identity

f e, E2dV = f —¢&! E2dV.
Q’dié:]ectric ‘Qmelal

For local plasmons in low-loss metal nanostructures, the
resonance frequencies lie in the visible or near infrared
range, away from any absorption peaks. In this case, we
can show from the analytical property of a dielectric func-
tion, &'(w)=1+2P [F 3= (") Ldx, that % =
—s§n+2+%Pf8°(%X 8’"7dx>—s It then follows

from Eqgs. (1) and (2) that

7 dlwsey) 12
Um — -/Qmelal dw E dV

fﬂlnelal( 8m)E2dV

2

U
If the nanostructure contains only one type of metal, ¢,
can be taken out of the integration, which then yields

Um/[_]d_d(w8 )/(

The ratio is determined solely by the metal dielectric
constant around the plasmon resonance frequency and
remains the same for nanostructures of different shape or

3)

form with a given resonance frequency. We present in
Fig. 1 the energy ratios versus plasmon frequency for
nanostructures made of silver and gold [18], the two mostly
commonly used materials, and of an ‘“‘ideal” metal de-
scribed by the Drude model.

This general conclusion on energy ratio is rather unex-
pected and may seem counterintuitive in certain cases. For
instance, consider the symmetric mode of a metal nano-
shell [Fig. 2(b)]. One might think that decreasing of the
shell thickness would decrease the em energy residing in
the metal and eventually make the conclusion invalid. This
does not happen because the reduced metal thickness red-

shifts the plasmon resonant frequency and causes d(”’(s’") to
increase and compensate the volume reduction in the ex-
pression of U,,. This keeps U,,/U, larger than 1 although
the exact value may vary.

The simple result on local-field energy distribution of
Eq. (3), or the closely related field intensity distribution in
Eq. (2), can help us understand a wealth of plasmon behav-
ior. We consider first variation of the plasmon resonance
frequency with the nanostructure design. This is most
apparent through Eq. (2), which can be recast into the form

— &, = f e E*dV/ E%dV. “)
Qgietectric Qnetal

For metals, —¢,, increases monotonically with decrease
of frequency below the bulk plasmon frequency (inset of
Fig. 1). In the design searching for a lower plasmon reso-
nance frequency in a nanostructure, for instance, we must
have a larger —¢,,, and following Eq. (4), we must increase
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FIG. 1 (color online). Plots of the ratios of plasmon energies in
the metal nanostructure to that in the surrounding dielectric
medium versus plasmon resonance frequency for metal materials
of gold (dashed line), silver (dotted line), and ideal Drude free-
electron metal (solid line). Results depend only on the dielectric
functions of the metals but not on the specific nanostructure.
Dielectric constants for gold and silver used in the calculation
were obtained from Ref. [18]. The bulk plasmon frequency of
the Drude metal is chosen to be at 9 eV to facilitate comparison
with silver and gold. The inset shows qualitatively the frequency
dependence of the real dielectric constant of a typical metal
below its bulk plasmon frequency.
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FIG. 2 (color online). Examples of field distribution affecting
the plasmon resonance frequency of a metal nanostructure.
(a) Metal spheres imbedded in different dielectric media,
(b) metal nanoshells of different thicknesses with symmetric
plasmon mode, (c) metal nanoshells of different thicknesses with
antisymmetric plasmon mode, (d) metal nanorods of different
aspect ratios with field polarization parallel to the rod, and
(e) metal nanorods of different aspect ratios with field polariza-
tion perpendicular to the rod.

the ratio on the right-hand side. Figure 2 provides a few
specific examples to achieve this: In Fig. 2(a), we have a
metal sphere in different dielectric media. The field distri-
butions are the same in the two cases, and the ratio gets
larger for higher ¢,. In Fig. 2(b), the symmetric mode of a
metal nanoshell has a field pattern relatively insensitive to
the shell thickness. Thinning the shell then decreases the
metal volume and increases the ratio. The antisymmetric
mode of the nanoshell described in Fig. 2(c), however, has
the opposite behavior. The field is drawn into the metal by
the opposite charges at two close surfaces in a thin shell. It
becomes less concentrated in the metal (and has a larger
ratio) when the shell thickness increases. Figure 2(d) shows
that a larger aspect ratio of a metal nanorod has more field
lines spread out in the dielectric medium for filed polar-
ization parallel to the rod, and hence a larger ratio. For
polarization perpendicular to the nanorod, displayed in
Fig. 2(e), the behavior is opposite; a smaller aspect ratio
now has a larger percentage of fringe field lines spread out
into the dielectric medium. For all these cases, the predic-
tion of a red-shift resulting from the increased ratio in
Eq. (4) is consistent with the more elaborated calculations
and experimental observations on metal nanospheres [19],
nanoshells [20-22], and nanorods [23].

Aside from the resonance frequency, the other important
parameter for plasmon resonance is the quality factor Q. A
higher Q factor representing a sharper resonance is often
desirable as it leads to stronger local-field enhancement.
With loss occurring only in the metal part of the nano-
structure, the Q factor has the expression [24]:

3 d(wey) T2 2
a)UIOtal — -/Qmelul E dV + deie]ecll'ic SdE dV

Q = a dw J &
dUtotal/dt 2 -/-‘Q’me!ul S,I,IIEde
de!,
w m
dw
= . 5
— 5)

Equation (5) shows surprisingly that the Q factor of the
plasmon resonance also depends only on the dielectric
function of the metal at the given plasmon frequency but
not on the geometric form and shape of the nanostructure
and the dielectric media (assumed to be dispersionless and
lossless). This means that there is not much one can do to
improve the sharpness of the plasmon resonance once the
metal material and resonance frequency are chosen. For
example, one can design different gold nanostructures like
nanorods or nanoshells to have the same plasmon fre-
quency, but one would find that all the plasmon resonances
have the same sharpness. In Fig. 3, we show the Q factor
versus plasmon frequency for nanostructures of gold and
silver. The result should be useful as a guide in the nano-
structure design aiming for a desirable plasmon resonance.
We note that we have neglected loss from radiation and
surface imperfection. Such losses effectively increase the
loss coefficient €/, and may make Q factor smaller and
vary for different nanostructures. In the quasistatic limit,
the radiation loss is small, but it can grow rapidly as the
nanostructure size increases and lead to broader resonance.
The surface imperfection loss has been found to be small in
high quality metal nanostructures [23].

We can use analytically solvable cases to confirm our
general results. Consider, for example, a metal nanoellip-
soid in a uniform dielectric medium. The induced dipole
moment on the ellipsoid by an external field E*" is [17]

pi = %abc(sm — eYEX /[e? + (" — &9)n;],

where a, b, ¢ are the three semiaxis lengths, subscript i
denotes the ith principle axis, and n; are real numbers
depending on the ellipsoid geometry. The plasma reso-
nance is characterized by the resonant denominator with
the resonant frequency wg and the half-width A w deduced
from [24]
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FIG. 3 (color online). Quality factor versus resonance fre-
quency for plasmon resonances in metal nanostructures.
Results for gold (dashed line) and silver (dotted line) are
displayed and they are independent of the shape and form of
nanostructures.
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Re[e, + (g, (wg) — e)n;] =0,

Rely + (ep(wp + A0) — s = Inlop(won)
where & < ¢!, and g, is real. It is then straightforward to
show that Q = w,/2Aw from Eq. (6) has the same ex-
pression as the general one in Eq. (5).

Finally, we investigate the effect of optical gain in the
dielectric medium on the plasmon resonance of a metal
nanostructure. Metal loss limits the sharpness of the plas-
mon resonance and hence the local-field enhancement
[15]. It is also detrimental to many other applications
[3,25]. Incorporating a gain medium in a nanostructure to
compensate the metal loss is an obvious way to possibly
solve the problem. Again, it will be helpful for the design if
there are general rules to describe how gain affects a
plasmon resonance. We examine the case where the metal
nanostructure is completely embedded in a dielectric gain
medium since this is the case of maximum achievable gain.

To include the gain in Q, we replace e; in Eq. (1)
by & +ici with &/ <0 and have U,=g X

J Qe d(;“jg)ﬁdv to account for the dielectric material

dispersion. With the help of Eq. (2), we obtain

d L E2dV
z(meelul 8:”{lﬁdv - -[‘Qdielec(ric |8glﬁdv)

dlwey) g2 d(wey) T2
Q — ‘/Qmelal w E dV + deie]ec(ric

wldeh 4+ lepl de

N 8;’1 |8g| -1 dow gy, do
B\FA M| )
m g m

As expected, the gain reduces the loss and enhances Q.
But again, the final Q does not depend on the form and
shape of the nanostructure as long as the materials and
plasmon frequency are fixed. When the gain is large
enough that |&}|/}, = &,/le},|, Q diverges and the nano-
system becomes an oscillator [26]. We then have a simple
criterion, |e}|/e, = €},/|e},|, for a metal nanostructure in
a gain medium to behave like an oscillator or amplifier.
This criterion is possible to satisfy in principle, but difficult
in practice, considering that metals generally are quite
lossy.

It is not clear whether the Q factor can be increased if we
look beyond the quasistatic limit and include the wave
retardation effect. The larger nanostructure may compro-
mise the localization of the plasmon field. One obvious
worry is that the radiation loss tends to increase dramati-
cally with the nanostructure size. For better Q, focus
should then be on plasmon resonances that forbid strong
electric-dipole radiation. More studies are needed to ad-
dress these questions.

In summary, we have shown that under the quasistatic
approximation, simple general relations regarding plasmon
energy distribution, resonance frequency, and linewidth,

and effect of optical gain can be derived without the need
of specifying the details of a nanostructure. These relations
constitute a useful framework that encompasses results
from a wide range of studies on specific metal nanostruc-
tures. Being nonspecific, they can be used to set limits on
the plasmon properties of a given nanostructure, and as a
guide in the design to explore plasmon resonances of more
complex nanostructures.
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