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We consider charge relaxation in the mesoscopic equivalent of an RC circuit. For a single-channel,
spin-polarized contact, self-consistent scattering theory predicts a universal charge relaxation resistance
equal to half a resistance quantum independent of the transmission properties of the contact. This
prediction is in good agreement with recent experimental results. We use a tunneling Hamiltonian
formalism and show in Hartree-Fock approximation that at zero temperature the charge relaxation
resistance is universal even in the presence of Coulomb blockade effects. We explore departures from
universality as a function of temperature and magnetic field.
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There is increasing interest in the dynamics of meso-
scopic structures motivated by the desire to manipulate and
measure quantum phenomena as rapidly as possible. It is
thus of great importance to characterize the time scales
governing the electron dynamics in simple mesoscopic
structures. An elementary but fundamental building block
is the quantum coherent capacitor [1]. As in the classical
case, the low frequency dynamics of a mesoscopic capaci-
tor is determined by a charge relaxation time �RC. For a
quantum coherent capacitor, the RC time can still be
written as the product of a resistance and a capacitance,
i.e., �RC � RqC�. However, due to the coherent nature of
electron transport through mesoscopic structures, both the
electrochemical capacitance C�, which determines the
charge on the capacitor, and the charge relaxation resist-
ance Rq, which governs the charge fluctuations, now cru-
cially depend on coherence properties of the system. The
capacitance C� is related to the imaginary part of the ac
conductance, but it can also be obtained by the differen-
tiation of a thermodynamic (grand-canonical) potential [2–
6]. The charge relaxation resistance Rq is related to the real
part of the ac conductance and, therefore, requires a dy-
namic theory. In analogy to the classical RC circuit de-
picted in the upper left corner in Fig. 1, one has for the
mesoscopic system

 G�!� � �i!C� �!2C2
�Rq �O�!3�: (1)

This equation will be taken as a definition of C� and Rq. If
the cavity-reservoir connection permits the transmission of
only a single spin-polarized channel, a self-consistent scat-
tering matrix approach gives at zero temperature a resist-
ance equal to half a resistance quantum [1]

 Rq �
h

2e2 : (2)

We emphasize that the factor of 2 is not connected to spin
but is rather due to the fact that the cavity connects to only
one electron reservoir. More astonishing, even counter-
intuitive, is the fact that Eq. (2) is independent of the

transmission properties of the channel. For Eq. (2) to
hold, it is essential that the entire reflection process at the
cavity is quantum coherent. Indeed, treatments which take
the metallic limit [2,3] (energy level spacing tends to zero)
or treat transmission onto and off the cavity in the sequen-
tial approximation [7] do not lead to a universal Rq.

In a seminal experiment, Gabelli et al. [8] have recently
measured both the in and out of phase parts of the ac
conductance of a mesoscopic RC circuit. In their experi-
ment, one ‘‘plate’’ of the capacitor consists of a submi-
crometer quantum dot (QD) and the other is formed by a
macroscopic top gate. The role of the resistor is played by a
tunable quantum point contact (QPC) connecting the QD
to an electron reservoir. The results of this experiment are
in good agreement with the theoretical predictions of
Ref. [1]. In particular, in the presence of a strong magnetic
field to spin polarize the electrons, they confirm the uni-
versality of the single-channel charge relaxation resistance.
However, it is a priori unclear whether the results derived
in Ref. [1] still hold in the presence of single charge effects
[2– 4], which must become important if the transmission
through the QPC becomes small. Indeed, the experiment
observes Coulomb blockade oscillations of the capacitance
as a function of the gate voltage. It is the aim of the present
work to present a theoretical description for the charge
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FIG. 1 (color online). Schematics of the mesoscopic capacitor.
A cavity is connected via one lead to an electron reservoir at
voltage V�t� and capacitively coupled to a backgate with voltage
Vg. The coupling matrix elements �mn are defined in the text.
The inset shows the corresponding classical RC circuit.
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relaxation resistance in the presence of Coulomb blockade
effects.

The mesoscopic RC circuit along with the principal
model parameters is shown in Fig. 1. V�t� � Vac cos�!t�
is the time-dependent voltage applied to the electron res-
ervoir, while Vg is the voltage applied to the gate and C is
the geometrical capacitance between the QD and the gate.
The matrix elements �mn, to be defined below, describe the
indirect coupling between the dot states m and n via the
reservoir.

Our first goal is to show that in the single-channel case
Rq is universal also in the Coulomb blockade regime. For
that purpose, we treat the cavity at the Hartree-Fock (HF)
level [9,10]. The starting point of our calculation is the
relation

 I�t� � �e
@
@t
=fTr�G<�t; t��g; (3)

which expresses the tunneling current through the QPC as
a function of the lesser (matrix) Green function (GF)
G<�t; t0� of the dot. We are primarily interested in the re-
gime where the modulation and thermal energies are small
compared to the level spacing in the dot. Treating the dot as
zero-dimensional, the Hamiltonian of this system is [11]

 H � HL �HD �
X
k�;n

�t�k;nc
y
k�dn� � H:c:�; (4)

where HL �
P
k�Ek��t�c

y
k�ck�, with Ek��t� � E0

k� �
eV�t�, describes the (noninteracting) electrons in the iso-
lated lead and t�k;n is the tunneling matrix element between
a reservoir momentum state k and the nth single particle
dot state, both with spin �. A change in the gate voltage is
modeled as a shift of the Fermi energy EF in the reservoir,
and we set Vg � 0. The Hamiltonian of the dot readsHD �P
n��n�d

y
n�dn� � Ec�N̂dot �N �t��2. Here Ec � e2=2C is

the electrostatic charging energy, N̂dot �
P
m�d

y
m�dm� is

the particle number in the dot, and eN �t� � CU�t� gives
the polarization charges between the dot and gate produced
by the time-dependent voltage at the reservoir [12]. This
polarization charge, in turn, leads to a time-dependent
(Hartree) potential U�t� inside the dot, and we may write
HD �

P
n�~�n��t�d

y
n�dn� � EcN̂

2
dot, with ~�m��t� � �m� �

eU�t�. In HF approximation, the retarded (advanced) GF of
the dot takes the form [13,14]

 GR�A��t; t0� � ei�U�t;t0�GR�A�
eq �t� t0�; (5)

where GR�A�
eq �t� t0� � GR�A��t; t0�Vac�0 is the equilibrium

retarded (advanced) HF Green function and �U�t; t0� �R
t0
t d�U���. The equal time lesser GF is obtained via the

Keldysh equation [13,15]

 G<�t; t� �
Z
dt1

Z
dt2GR�t; t1��<�t1; t2�GA�t2; t�: (6)

Here �<�t; t0� � i�ei�V �t;t0�f̂�t� t0�, with �V�t; t
0� �R

t0
t d�V��� is the lesser coupling self-energy and f̂�t�

t0� � �1=2��
R
dEe�iE�t�t

0�f�E� is the Fourier transform
of the Fermi function. ��mn � 2��Lt

��
m t

�
n are the coupling

matrix elements in the wide band limit [13]. Here and in the
following, we use the matrix notation Am�;n�0 	 A�mn���0 ,
which takes advantage of the fact that spin is conserved in
Eq. (4). An important property of the coupling matrix
elements is that ��mn��kl � ��ml�

�
kn, from which it immedi-

ately follows that for arbitrary matrices A and B

 Tr ���A��B� � Tr���A�Tr���B�; (7)

where the trace is over a basis of dot states with spin �.
Since we are interested in the linear conductance, we
expand (6) to linear order in V and U and find after double
Fourier transformation

 G<�E;E0� � GR
eq�E��

<
1 �E;E

0�GA
eq�E

0� �O�U2; V2�; (8)

where �<1 �E;E
0� is the double Fourier transform of

�<1 �t; t
0� � i��1� i��t; t0��f̂�t� t0�, with ��t; t0� 	

�V�t; t0� ��U�t; t0�. With (3) and (8), the linear response
tunneling current at frequency ! becomes I�!� � g�!�

�V�!� �U�!��, with

 g�!���i
e!
2�

Z
dEF�E;!�Tr�GR

eq�E��GA
eq�E�!��; (9)

where F�E;!� � �f�E�!� � f�E��=! and we have set
@ � 1. To obtain the ac conductance G�!� � I�!�=V�!�,
we need the internal potential U�!�. For this, we note that,
in the present single lead system, the displacement current
�i!eN �!� is equal to the tunneling current so that
g�!��V�!� �U�!�� � �i!CU�!� and, consequently
[16], U�!� � g�!�V�!�=��i!C� g�!��. Expanding the
conductance to second order in frequency, we then obtain
after restoring the units

 Rq � �
h

2e2

R
dEf0�E�Tr�D�E�2�

�
R
dEf0�E�Tr�D�E���2

; (10)

where f0 � df=dE and D�E� 	 GR
eq�E��G

A
eq�E�. Using

(7), we have Tr�D��E�2� � Tr�D��E��2 and, hence, at
zero temperature

 Rq �
h

2e2

P
� 	��EF�

2

�
P
� 	��EF��

2 ; (11)

where 	��E� 	 Tr�D��E��=2� is the density of spin �
states in the dot. Equations (9) and (11) are the central
results of this work. In particular, Eq. (11) demonstrates
that for a single (spin-polarized) channel Rq is still given
by Eq. (2).

In the following, we use Eq. (11) to investigate the
magnetic field dependence of Rq. We consider here a dot
with two spin degenerate levels with bare energies �1� and
�2� � �1� � �, respectively. In the numerical calcula-
tions, we set � � 1 and 2Ec � 2:5. We are interested in
the regime of low magnetic field, where the Zeeman split-
ting �B � �BgB � �. For simplicity, we further assume
that �"mn � �#mn 	 
, for m; n 2 f1; 2g. The equilibrium
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HF retarded GF of the dot may be written as GR
eq�E� �

�GR
0 �E�

�1 � �R
HF � i�=2��1, with the noninteracting equi-

librium GF of the isolated dot �GR
0 �E��mn � �mn�E�

�m � i0���1 and the HF self-energy

 ��R
HF�

�
mn � 2Ec

�
�mn

X
l�0
hnl�0 i � hd

y
m�dn�i

�
: (12)

The most important feature of this self-energy is that it
correctly excludes the unphysical self-interaction terms
(m � n � l and � � �0) of the Hartree approximation
and, consequently, leads to the appearance of the
Coulomb gap across EF, which is the essential spectral
signature of the Coulomb blockade effect. The ‘‘mean
fields’’ hdym�dn�i are determined self-consistently [17] by
solving the set of equations

 hdym�dn�i �
1

2�

Z 1
�1

dEf�E��GR
eq�E��GA

eq�E���mn: (13)

Because of the interaction, 	��E� depends on the level
occupancies, and we must distinguish two cases. Solving
Eq. (13) numerically in the strongly blockaded regime
�
� �� 2Ec, we find that Rq is nonuniversal even as
B! 0 (upper left panel in Fig. 2). This is due to the fact
that the dot charge is strongly quantized in this regime, as
shown in the lower left panel in Fig. 2, which leads to a gap
of order 2Ec �����0 � �1� ���0 ��B between the high-
est occupied state with spin � and the lowest unoccupied
state with spin �0. There are thus four well separated
(separation 
e2=C), narrow (width 

) resonances in
the total density of states

P
�	� as a function of EF. We

can understand the particular behavior of Rq shown in the
upper left panel in Fig. 2 at specific values of the Fermi
energy. If EF is on a resonance with spin�, then 	�0 �EF� �
	��EF����0 . Therefore, on resonance, i.e., for EF 2
f�1�; �2�; �1 �� � 2Ec � �B; �2 �� � 2Ec ��Bg, we expect
to have Rq � h=2e2 according to (11). Furthermore, in
the middle between two consecutive resonances 	��EF� �
	 ���EF�, and so Rq takes on its minimal two-channel value
h=4e2. In the opposite limit of strong coupling 1 &

�
=2Ec, the Coulomb blockade is smeared out, and the
charge on the dot is not strongly quantized anymore (see
lower right panel in Fig. 2). Thus, at very low magnetic
fields, the two spin states are nearly simultaneously
charged and the degeneracy is not appreciably lifted.
Therefore, Rq � h=4e2 at low magnetic fields as shown
in the upper right panel in Fig. 2. As �B increases, the
broad resonances in the density of states corresponding to
the two spin degenerate levels split into consecutively
overlapping resonances, and Rq starts to increases except
in the middle between two neighboring resonances.
Finally, a crossing of the two innermost resonances is
observed for �B � 0:75. Such a crossing occurs when
the Zeeman splitting approaches the effective level spacing
�� 2Ec�hn1�i � hn2 ��i�, which interestingly is seen to be
smaller than the bare level spacing here. This effect is

peculiar to the strongly coupled regime and is due to
enhanced exchange interactions, which favor the conse-
quent population of states with equal spins [18,19]. At the
crossing point, the densities of both spin states are equal
and Rq takes on its minimal value.

As a second application, we investigate the temperature
dependence of Rq in the high magnetic field limit, where
the incoming electrons are effectively spin-polarized and
there is only a single transmitting channel through the
QPC. We consider here a quantum dot with two (bare)
levels �1 and �2 � �1 �� and suppress the now super-
fluous spin index. In the low temperature regime kBT � 
,
we may expand 	�E� and 	�E�2 around EF, assuming that
these functions vary slowly in the range EF � kBT=2. This
yields to first nonvanishing order in kBT 	 ��1

 Rq �
h

2e2

�
1�

�2

3�2

�
	0�EF�
	�EF�

�
2
�
; (14)

where 	0�E� 	 @	�E�
@E . Thus, in HF approximation, the low-

est order correction is proportional to the square of the
energy derivative of the density of states at the Fermi
energy. This explains the presence of the peaks seen in
Fig. 3, to the left and right of the two resonances at EF �
�1 � 1 and EF � ��2 � �1 � 2Ec ��, for the two lowest
temperatures � � 100 and � � 12:5. The fact that, for
� � 12:5, Rq does not identically vanish at resonance
where 	0�EF� � 0 is due to higher order terms in the low
temperature expansion, which involve nonvanishing higher
order derivatives of 	. The dotted horizontal line at Rq �
h=2e2 marks the zero temperature result. In the opposite
limit of very high temperature kBT � �� 2Ec, where

 

FIG. 2 (color online). Magnetic field dependence of the charge
relaxation resistance Rq. The upper panels show Rq as a function
of the Zeeman splitting �B and the Fermi energy EF for weak
�
=2Ec � 0:13 and strong �
=2Ec � 1:4 coupling. All ener-
gies are given in units of the bare level spacing �. The lower
panels show the corresponding total dot charge.
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�f0�E� � �=4 and in the weakly coupled regime 
� �,
where the density of states is well approximated by a
sum of displaced Lorentzians of width 
, we can esti-
mate the remaining integrals in the numerator and denomi-
nator of (10) as �

R
dEf0�E�	�E�2 � �M=4�
 and

�
R
dEf0�E�	�E� � �M=4, respectively, where M is the

number of density of states peaks under the broad curve
f0�E�. Therefore, at very high temperature, we find

 Rq �
h

e2

2

�
M�
: (15)

This high temperature limit is shown as a dashed horizontal
black line in Fig. 3 for the two highest temperatures. In the
present two level system, M � 2 and as expected the
agreement with the numerical integration of (10) is good
for the highest temperature ��1 � 50� �� 2Ec � 3:5.
For the intermediate temperature � � 1<��1 �
2<�� 2Ec � 3:5, there is already a significant deviation
from the asymptotic result. In the inset in Fig. 3, we show
Rq as a function of the temperature on the first resonance at
EF � �1. The dashed line corresponds to the high tem-
perature asymptote (15), and the dotted line is the low
temperature limit (14).

In this work, we have analyzed the charge relaxation of a
mesoscopic capacitor in the linear regime of coherent
dynamical transport. We have shown that the single-
channel zero temperature charge relaxation resistance Rq
is universal even in the presence of single charge effects,
described in the Hartree-Fock approximation. This shows,
in particular, that charge relaxation of a quantum coherent
capacitor is faster than one could naively expect based on
classical arguments. We obtain the magnetic field depen-
dence of Rq in the two-channel case (electrons with spin),
where we identify two qualitatively different regimes of
weak and strong coupling. In the former, the degeneracy of

both spin states is lifted by the interaction at all field
strengths and Rq is nonuniversal. In the latter regime, the
degeneracy is lifted only at finite field, and at zero field Rq
is universal and equal to its minimum two-channel value
h=4e2. The finite temperature behavior of Rq for a two
level spin-polarized system is, to lowest order, determined
by the logarithmic derivative of the density of states with
respect to energy. In the multilevel case, the HF approxi-
mation gives a reasonable qualitative picture of the under-
lying physics. The important case of B � 0, for a single
strongly coupled level in the dot, requires a treatment of
Kondo physics and will be discussed elsewhere [20].

Our work demonstrates that mesoscopic charge relaxa-
tion is a physically very interesting process and provides a
basis for the understanding of experimental data in the low
and high magnetic field ranges.

We thank C. Glattli and J. Gabelli for discussions and
sharing their data with us. This work was supported by the
Swiss NSF, MaNEP, the Spanish MEC by Grant
No. MAT2005-07369-C03-03, and the Ramon y Cajal
program.
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0 2 3 4 5

0.5

1

10

100

πγ/2E
c
=0.13, ∆=1

E
F

R
q

10
−2

10
0

0.5
1

10

1/β

R
q

β=0.02

β=0.5

β=12.5

β=100

ε
1
=1

FIG. 3 (color online). Charge relaxation resistance Rq as a
function of Fermi energy EF for different temperatures. The
lower three curves are for a two level dot. The uppermost curve
is the high temperature asymptote. The inset shows Rq as a
function of temperature for EF � �1.
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