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Driven Drops on Heterogeneous Substrates: Onset of Sliding Motion
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Pinning and depinning of driven drops on heterogeneous substrates is studied as a function of the
driving and heterogeneity amplitude. Two types of heterogeneity are considered: a “hydrophobic’ defect
that blocks the drop in front and a “hydrophilic’ one that holds it at the back. Two different types of
depinning leading to sliding motion are identified, and the resulting stick-slip motion is studied

numerically.
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It is well known that liquid drops on an ideally smooth
substrate move in response to external gradients. For ex-
ample, a drop on an inclined substrate slides downslope in
response to the gradient of potential energy [1,2].
Likewise, a drop in a temperature gradient moves towards
lower temperatures as a result of Marangoni forces caused
by surface tension gradients [3]. A wettability gradient
induced by a chemical grading of the substrate also results
in drop motion: The drop moves towards the most wettable
region in order to minimize its energy [4,5].

Although on ideally smooth substrates drops will move
even for arbitrarily small gradients, this is not the case for
the ““real” substrates used in experiments where the onset
of drop motion is strongly influenced by spatial heteroge-
neities such as surface topography, wettability defects, or
variations in the substrate temperature [6]. Variations in the
electric field act in a similar way as wettability defects on
drops in a condensor [7]. In all such systems, a finite
driving force is necessary to overcome the pinning influ-
ence of the heterogeneities [§—15]. On the smaller, atomic
scale, surface heterogeneities can trap drops even on very
smooth surfaces. Indeed, heterogeneities occurring on a
micro- or mesoscale are known to affect the macroscopic
movement of drops and are responsible, for instance, for
the observed hysteresis between advancing and receding
contact angles, as well as for the observed roughening of
contact lines [16-20].

The simplest example of depinning is described by the
Adler equation [21]

6 = p — sind, )

where 6 represents the drop position, and w > 0 represents
the applied force. When w <1, a pair of fixed points is
present, one of which is stable and the other unstable. At
u =1, these annihilate in a saddle-node bifurcation, pro-
ducing periodic motion for & > 1. This result is simplest to
understand if we write Eq. (1) as § = —dV/d6, V =
—p6 — cos6. Evidently, Eq. (1) represents an overdamped
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particle in a cosinusoidal potential that is progressively
tilted as w increases. A “‘particle’’ in a stable equilibrium
at a local minimum of this potential ““spills out” once the
tilt becomes large enough that its position no longer cor-
responds to a minimum. This occurs precisely at u = 1.
The periodic motion present for u > 1 corresponds to the
particle sliding down the resulting ‘““washboard” potential.
The period of this motion diverges as (u — 1)~'/2 [22].
The resulting bifurcation is sometimes called a saddle-
node infinite period bifurcation or ‘“sniper” for short.

In this Letter, we explore the dynamics associated with
the depinning of driven drops or ridges pinned by a het-
erogeneity. For simplicity, we choose a generic dynamical
model describing drops on a solid substrate coexisting with
a thin film [23-25] and model the effects of heterogeneity
through a well-defined spatially periodic perturbation
(Fig. 1). Random heterogeneities [18—20,26] are not con-
sidered. The system is driven by a lateral force . In two
dimensions, the model takes the form of an evolution
equation for the film thickness profile A(x,t) derived
from the Navier-Stokes equation using the long-wave ap-
proximation [23]:

h3
ah = —ax(g{ax[yaxxh + P(h )] + ﬂ})- ®)
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FIG. 1 (color online). Sketch of a drop on a heterogeneous
substrate subject to a horizontal force towards the right.
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Here vy is the surface tension, 7 is the dynamic viscosity,
while P(h, x) is an additional pressure term accounting for
wettability, heating, electric field, etc. [27]. As an example,
we use the disjoining pressure P(h, x) = &[b/h® — &(x) X
exp(—h/1)] describing the wetting properties of the sub-
strate [17,24,28,29]. This disjoining pressure corresponds
to a combination of a long-range power law and a short-
range exponential interaction [28,30], with the short-range
component capturing the effects of spatial heterogeneity
through the coefficient £(x). The overall strength of the
interaction with the substrate is measured by the energy
density scale k = &/[’. Any qualitatively similar pressure
P yields like results, as shown for dewetting in Ref. [24],
heated wetting films in Ref. [31], and for chemically driven
running drops in Ref. [32]. When @ = 0, the resulting
model describes static drops with a finite mesoscopic
equilibrium contact angle sitting on a precursor film.

In the following, we nondimensionalize Eq. (2) using the

scales 3y/«k?l for time and +/ly/k for the lateral coor-
dinate. The film thickness is scaled by the interaction
length [ that provides a characteristic scale for the thick-
ness of the precursor film. In addition, we define the
dimensionless volume force u = (yI/k*)"/2 fi. To identify
the basic dynamical mechanisms responsible for depin-
ning, we restrict our attention to drops not much thicker
than the wetting layer. This case includes not only nano-
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FIG. 2 (color online). Characteristics of pinned drops as a
function of the forcing wu for localized hydrophilic [(a) and
(c), € = —1] and hydrophobic [(b) and (d), € = 1] defects.
The upper parts of (a) and (b) show steady drop profiles, while
the lower parts show the wettability profile [Eq. (4) with s = 6].
The profile at depinning is shaded. In (a), the drop is pinned by a
more wettable defect at the back, whereas in (b) it is blocked by a
less wettable defect in front; (c) and (d) show the advancing and
receding contact angles 6 as a function of w. The remaining
parameters are L = 25, b = 0.1, and h=15.

drops on ultrathin precursor films (/ = 1,..., 10 nm) but
also microdrops on macroscopic wetting layers (I =
10,...,100 pum). In the latter case, the pressure P may
include the influence of temperature and/or electric fields
[27,31,33], in addition to wettability in the form of repul-
sive van der Waals interactions. The spatial modulation
responsible for pinning can then arise from any of the terms
contributing to P. In the following, we call any heteroge-
neity that attracts [repels] liquid a hydrophilic [hydropho-
bic] defect.

Figures 2(a) and 2(b) show sample steady state profiles
for two cases: (a) a hydrophilic defect and (b) a hydro-
phobic defect. Both are described by

P(h,x) = % —[1+ e&(x)]e™™, 3)

with a dimensionless coefficient b and
£(x) = {2en(K (k)x/L, b)}* — A, “

where K (k) is the complete elliptic integral of the first kind
and A is such that the average of £(x) over a spatial period
L vanishes. We use the logarithmic measure s =
—log(1 — k) to quantify the steepness of the heterogeneity
profiles [Figs. 2(a) and 2(b)]. In Fig. 2(a), the drop is held at
the back by a hydrophilic defect (e <0) and develops a
prominent shoulder as wu increases just prior to depinning.
In contrast, in Fig. 2(b), the hydrophobic defect (e > 0)
blocks the drop and its profile steepens with increasing u.
The profiles at depinning are shaded. Figures 2(c) and 2(d)
show the advancing and receding mesoscopic contact an-
gles, measured at the inflection points of the drop profile,
as a function of u. For a drop pinned at the back [Fig. 2(c)],
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FIG. 3 (color online). (a) Bifurcation diagram for depinning
via a sniper bifurcation for a hydrophilic defect [Eq. (4) with
s=6]withe = —1.0and L = 25,b = 0.1, h = 1.5. The figure
shows the L? norm of steady solutions (solid line), selected
steady solutions as obtained by integration in time (circles),
and the time-averaged L? norm for the unsteady solutions
beyond depinning (triangles). The inset shows the inverse of
the temporal period T for the latter. The remaining panels show
space-time plots over one spatial and temporal period for a
sliding drop (b) close to depinning at w = 0.0185 with T =
740.7 and (c) far from depinning at w = 0.04 with 7 = 100.7.

204501-2



PRL 97, 204501 (2006)

PHYSICAL REVIEW LETTERS

week ending
17 NOVEMBER 2006

the advancing [receding] angle decreases [increases] for
small but increasing driving. However, once the drop starts
developing a shoulder at the back, the receding angle
decreases again until depinning occurs. The situation dif-
fers for a drop pinned at the front [Fig. 2(d)]. In this case,
both angles increase with x but drop just prior to
depinning.

The depinning process corresponds to the loss of stabil-
ity of the pinned drop. The stability calculation [34] reveals
two mechanisms that lead to depinning. The first is via a
sniper bifurcation (i.e., a steady state bifurcation) and
prevails for hydrophobic defects with small wettability
contrast [34] and for hydrophilic defects. Figure 3(a) shows
a typical bifurcation diagram for the latter case as a func-
tion of increasing u. The figure shows the L?> norm of
8h = h(x) — h, h = L™ [} h(x)dx, for pinned drops and
its time average after depinning. Although there are two
saddle-node bifurcations in the diagram, time integration
(open circles) shows that the upper part of the branch of
pinned drops is stable until the rightmost saddle-node
bifurcation. Thereafter, the solutions are time-dependent
but periodic (open triangles). The inset shows that near the
saddle-node the period diverges like (u — w,.)~ /2 and,
hence, that in this case depinning corresponds to a sniper
bifurcation. Figures 3(b) and 3(c) show space-time plots of
the resulting motion for (b) u = w., and (c) u = 0.04. In
Fig. 3(b), the drop spends a long time in a nearly stationary
state while slowly spreading downstream, before it
abruptly breaks off and moves towards the next defect.
The resulting dynamics resembles a stretch-slip-stick mo-
tion. In contrast, in Fig. 3(c), the drop flows more or less at
constant speed downstream, although the location of the
defect remains visible in the space-time plot.
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FIG. 4 (color online). (a) Phase diagram for the depinning
transition for localized hydrophilic (€ < 0) or hydrophobic (e >
0) defects [Eq. (4) with s = 6]. The figure focuses on a small
wettability contrast for L =25, b = 0.1, i = 1.5. The solid
(dashed) lines correspond to saddle-node (Hopf) bifurcations.
The latter emerge near the cusp at which the two saddle-node
bifurcations annihilate for € > 0. (b) Advancing (solid lines) and
receding (dashed lines) contact angles 6 at the depinning tran-
sition as a function of wettability contrast for a hydrophilic
defect at the back (e < 0) and a hydrophobic defect at the front
(e > 0). The thick (thin) lines refer to depinning through a real
(oscillatory) mode.

Figure 4(a) shows the location of the two saddle nodes in
the (e, ) plane. In the case of a hydrophilic defect (e < 0),
the saddle nodes are always present; the one at larger u
corresponds to the depinning bifurcation. For fixed / and
large L, the critical u decreases as 1/L (not shown), as
expected on the basis of simple loading ideas. However,
Fig. 4 also shows that something else happens for suffi-
ciently hydrophobic defects. Here the saddle nodes anni-
hilate at € = 0.6, and depinning now occurs via a Hopf
bifurcation (dashed line). The resulting bifurcation dia-
gram [Fig. 5(a)] shows that the range of stable pinned
profiles overlaps with the range of sliding drops generated
by this instability. As w decreases, the latter states lose
stability at a saddle-node bifurcation, and the system settles
into a time-independent pinned state in a hysteretic tran-
sition. Figures 5(b) and 5(c) show space-time plots of the
sliding state both near this transition and further away.
Here the depinning is as abrupt as for a hydrophilic defect
[Fig. 3(b)] but without the associated stretching. However,
farther away from the transition the depinned states in both
cases look alike: In both cases, the drop travels at almost
constant speed, only slightly modulated by the hetero-
geneity.

The advancing and receding angles at depinning (shaded
profiles in Fig. 2) shown in Fig. 4(b) provide a measure of
the contact angle hysteresis. In the case of a hydrophobic
defect at the front (e > 0), both angles increase nearly
linearly with defect strength and continue to do so even
for oscillatory depinning (e = 0.6); the small hook visible
in the figure near this transition indicates that the Hopf
bifurcation sets in prior to the disappearance of the saddle-
node bifurcations. The behavior is more intricate when the
pinning is by a hydrophilic defect at the back (e < 0). In
this case, the role of the two angles is reversed, and both
decrease nearly linearly with slopes identical to those in
the € > 0 case. For € < —0.2, however, the receding angle
reverses tendency and starts to increase again, while the

FIG. 5 (color online). As for Fig. 3 but showing depinning via
a Hopf bifurcation when € = 1.0. (a) Bifurcation diagram.
(b) Space-time plot for wu =0.0415 with T = 206.4.
(¢) w =0.08 with T = 47.4. The vertical line indicates the
location of the Hopf bifurcation as obtained from linear stability
theory [34].
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advancing angle continues to decrease. This change in
behavior is a consequence of the stretching of the drop
with increasing driving just prior to depinning: For € <
—0.2, the force drags the main body of liquid downstream
(to the right) but the spot of higher wettability traps part of
it upstream. For fixed u, the latter effect becomes more
pronounced as |€| increases; cf. Fig. 4(b).

We have examined the dynamics of depinning of drops
on heteregeneous substrates subject to a driving force;
besides gravity, possible driving forces include centrifugal
forces and gradients of wettability, temperature, or electric
fields. We have studied two types of pinning, by a hydro-
philic defect at the back of the drop or by a hydrophobic
defect in front, and identified two mechanisms whereby
depinning takes place. In the case of a sufficiently large
hydrophilic defect, the drop stretches markedly just prior to
depinning as the driving increases; the drop loses stability
at a saddle-node bifurcation, resulting in periodically
modulated drop motion with an average speed that van-
ishes as (u — w.)'/2. We have referred to this type of
bifurcation as a sniper. The resulting motion is slow
when the drop is stretching and fast once the drop breaks
away from a defect and spills onto the next one. The
situation is richer for hydrophobic defects that pin the
drop by blocking it. In this case, in addition to the steady
state sniper bifurcation, a new depinning mechanism was
observed with increased driving: The drop loses stability to
an oscillatory mode prior to depinning. In the example
shown, this bifurcation is hysteretic and the motion sets
in with finite speed. Physically, the oscillations represent a
rocking motion of the drop driven by the O(il?) flow in the
precursor film or wetting layer. Consequently, oscillatory
depinning is possible only if the precursor flow is suffi-
ciently large. This is not the case for nanodroplets driven
by gravity; for such droplets, depinning always occurs via
the sniper bifurcation. For large drops (h,,,x >> [), oscil-
latory depinning is also suppressed [34]. However, in
dielectric liquids, a thick wetting layer of 100 nm to
1 um stabilized by van der Waals interaction can coexist
with microdroplets generated by an electric field
[27,31,35], and both depinning mechanisms should be
observable using gravity as the driving force.
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