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The ionization of a one-dimensional model helium atom in short laser pulses using time-dependent
density-functional theory is investigated. We calculate ionization probabilities as a function of laser
intensity by approximating the correlation function of the system adiabatically with an explicit depen-
dence on the fractional number of bound electrons. For the correlation potential we take the derivative
discontinuity at integer numbers of bound electrons explicitly into account. This approach reproduces
ionization probabilities from the solution of the time-dependent Schrödinger equation, in particular, the
so-called knee due to nonsequential ionization.
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Experimental double ionization yields for helium atoms
in laser fields of � � 614 nm [1] and � � 780 nm [2]
show a knee structure as a function of intensity, i.e., double
ionization is enhanced over the expected yields for sequen-
tial ionization by several orders of magnitude and was
therefore named nonsequential double ionization (NSDI).

Theoretically, the problem was addressed successfully
using the strong-field approximation (see, e.g., [3] and
references therein) and classical methods [4]. The widely
accepted mechanism behind NSDI relies on the rescatter-
ing of the first electron with its parent ion, collisionally
ionizing (or exciting) the second electron.

However, investigations using time-dependent density-
functional theory (TDDFT) [5] failed to reproduce the
characteristic knee of the double ionization probability
[6–8]. This failure is especially important given the fact
that TDDFT offers the possibility to treat the strong-field
dynamics of atomic and molecular systems from first
principles in a numerically tractable way, whereas the
solution of the Schrödinger equation in full dimensionality
[9] is limited to two active electrons. Other methods used
to tackle the NSDI problem from first principles are
R-Matrix Floquet theory [10] or multiconfigurational
time-dependent Hartree-Fock [11,12], which, however,
have not yet reproduced NSDI knees either.

Two reasons for the failure of TDDFT in the context of
NSDI were identified [13]: the approximation of the
exchange-correlation functional vxc and the approximation
of the functionals for the calculation of the ionization
probabilities. Initial attempts to overcome these problems
were not successful [13]. Recent progress in approximating
vxc has been made by including the derivative discontinu-
ity at integer numbers of bound electrons [14–16]. In this
work we therefore focus our attention on the open prob-
lem of constructing functionals for the calculation of the
ionization probabilities. We show that by using a rather
simple adiabatic approximation of the correlation function,
the ionization yields for a model He atom in few-cycle

laser pulses (for which we have the exact time-dependent
Schrödinger solutions at hand) are remarkably well
reproduced.

We investigate helium in linearly polarized N � 3-cycle
laser pulses of duration T � N2�=! with a sin2-pulse
envelope in dipole approximation, i.e., the vector potential
is of the form A�t� � Âsin2� !2N t� sin�!t� for 0 � t � T.
Two different pulses with frequencies used in experimental
work [1,2] are chosen: ! � 0:058 and ! � 0:074 (atomic
units are used throughout this work unless otherwise in-
dicated). The linear polarization of the laser pulses allows
to model helium by a one-dimensional atom with soft-core
potentials for the Coulomb interactions. It is known that the
essential features of the nonsequential double ionization
process are described well by this model [6,7,11,14,16,17].
For different effective peak intensities I � I�Â� of the laser
pulses we solve the time-dependent Schrödinger equation
(TDSE) i@t � Ĥ with the Hamilton operator

 Ĥ �
X
k�1;2

�
�

1

2
@2
xk � V�xk; t�

�
�W�x1 � x2�; (1)

where Ĥ � Ĥ�x1; x2; t�, the external potential V�x; t� �

�iA�t�@x � 2=
�����������������
x2 � �ce

p
(the A2 term has been trans-

formed away), and the electron-electron interaction poten-

tial W�x� � 1=
�����������������
x2 � �ee

p
. The solution is the two-electron

wave function  �x1; x2; t� in a spin singlet state. Therefore,
we have just one Kohn-Sham orbital fulfilling i@t� �
ĤKS� with � � ��x; t� and ĤKS�x; t� � ��1=2�@2

x �
V�x; t� � vhxc�x; t�. The Hartree-exchange part vhx �
vh � vx of the potential vhxc � vh � vx � vc is known
exactly for the helium atom, vh�x; t� �R
dx02j��x0; t�j2W�x� x0� and vx�x; t� � �

1
2vh�x; t�. A

simple model for the correlation potential which takes
into account the derivative discontinuity at integer numbers
of bound electrons is that recently proposed by Lein and
Kümmel [14]
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 vLK
hxc�x; t� �

N0=N�t�
1� exp�C�N0=N�t� � 2��

vhx�x; t�; (2)

where N�t� �
R
�a
�a dx2j��x; t�j2 is the number of bound

electrons and N0 � N�t � 0�. C is a positive, sufficiently
large number, e.g., C � 50. We choose �ce � 0:5 which
yields the correct I�2�p � 2:0. In order to reproduce I�1�p �
0:904 in the Schrödinger equation �ee � 0:329 and in the
TDDFT calculation �ee � 0:343 are used (results do not
change qualitatively for a different choice of �ce and �ee).
To encompass the bound states, the parameter a is set to
a � 6 throughout this work. The Schrödinger and Kohn-
Sham equations are solved numerically by a split-operator
time propagator on a numerical grid (see, e.g., [18] and
references therein).

For our model atom, the diagonal of the two-electron
density matrix is the pair density ��x1; x2; t� �
2j �x1; x2; t�j

2. The exact density of the system

 n�x; t� �
Z
dx0��x; x0; t� (3)

can, in principle, be calculated from the Kohn-Sham orbital
of a TDDFT calculation with the correct exchange-
correlation potential vxc as n�x; t� � 2j��x; t�j2. Using
vxc in the LK approximation yields approximate densi-
ties nLK. The time-dependent correlation function of the
model atom is gxc�n��x1;x2;t����x1;x2;t�=n�x1;t�n�x2;t�.
The conditional probability to find at time t an electron at
x2 in dx2 if there is an electron at x1 is given by
n�x2; t�gxc�x1; x2; t�dx2. Since the probability is an observ-
able, the Runge-Gross theorem [5] assures that gxc can in
principle be expressed exactly as a functional of the density
[13].

For a system with a two-electron wave function that can
be expressed as a product of single-electron orbitals, gxc

simplifies to gxc � gx �
1
2 . The correlation contribution to

the correlation function is thus defined as

 gc�n��x1; x2; t� �
��x1; x2; t�

n�x1; t�n�x2; t�
�

1

2
: (4)

Because of Eq. (3), gc fulfills the integration constraintsR
dxin�xi; t�gc�n��xi; xj�i; t� � 0 with i, j 2 f1; 2g.
A quantity of central importance to our work is the

number of electrons bound to the helium core at time t,

 N�t� �
Z �a
�a

dxn�x; t�; (5)

which also plays a central role in the exchange-correlation
potential vxc in ionization processes, as in Eq. (2).

In the two-electron space of the model atom we attribute
areas to single ionization P� (either jx1j> a and jx2j � a
or jx1j � a and jx2j> a) and double ionization P2�

(jx1j> a and jx2j> a). Integration of j �x1; x2; T�j2 over
these areas yields the ionization probabilities. This proce-
dure to calculate ionization probabilities is well established

[6,7,11] and leads to ionization probabilities depicted in
Fig. 1. Substituting the density and the correlation function
for the pair density in the integrals and using P0 � P� �
P2� � 1 (P0 being the probability for the atom to remain
neutral) yields the exact ionization probabilities [13]

 P��t� � 2p�t��1� p�t�� � Ic�t�; (6)

 P2��t� � �1� p�t��2 � 1
2Ic�t�; (7)

where p�t� � 1
2

R
�a
�a dxn�x; t� and the correlation integral is

given by

 Ic�t� �
Z �a
�a

dx1

Z �a
�a

dx2n�x1�n�x2�gc�x1; x2�; (8)

with the density and the correlation function depending on
time t and gc � gc�n�.

It is important to note that Eqs. (6)–(8) assure that only
the exact density in the range�a � x � �a and the exact
correlation function for�a � x1, x2 � �a are required to
calculate the exact ionization probabilities.

The functional dependence of gc on n is not known and
the calculation of the pair density � at time t � T is
computationally demanding even for the one-dimensional
helium model atom. Therefore, it is necessary to find a
suitable approximation for gc�n��x1; x2; T� to calculate Ic.
Setting Ic�t� � 0 corresponds to assuming the two-electron
wave function to be a product of identical single-electron
orbitals. This interpretation of the Kohn-Sham orbitals as
electron orbitals has been widely used [6,7,13,14]. How-
ever, this approach leads to ionization probabilities which
differ significantly from the exact probabilities even when
the exact density (3) is used [7], as shown in Fig. 1. The LK
approximation for vxc leads to probabilities which closely
resemble the probabilities calculated from the exact
densities.

The TDSE solution yields the exact pair density. This
allows us to calculate the exact gc and Ic as a reference for
approximations of gc. Figure 2 reveals a structure of the
integrand of Ic�T� which is remarkably simple. This is

 

FIG. 1. Single and double ionization probabilities for exact
and LK densities using Ic � 0 compared to the TDSE solution
for a � � 780 nm laser pulse.
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caused by the multiplication of gc by the density at x1 and
at x2, which exhibits a maximum at the origin. For the other
laser pulse the integrand of Ic reveals a qualitatively similar
structure.

The values of Ic�T� for the two laser pulses are depicted
in the left panel of Fig. 3 as a function of the number of
bound electrons N�T�. Ic shows a quantitatively similar
behavior for both laser pulses: a minimum value for Ic is
reached when the number of electrons is equal to one. This
result points to the importance of the quantity N�T� for the
value of Ic�T�.

We shall now introduce our adiabatic approximation for
gc. The starting point is our assumption that the system in
the vicinity of the helium core after the laser pulse closely
resembles a ground state system with a fractional number

of electrons given by the number of bound electrons N�T�.
We approximate numerator and denominator of the corre-
lation function separately as linear combinations of the
ground state densities ni and ground state pair densities
�i of i-electron systems. The density of the model helium
atom is expressed as [14]

 nA �
�
�1� N�n0 � Nn1 0 � N � 1
�2� N�n1 � �N � 1�n2 1 � N � 2

; (9)

where nA � nA�x; t�, ni � ni�x�, and N � N�t� is given by
(5). Using nA�t� in the ground state Kohn-Sham equation to
calculate vc�t� and consequently employing vc�t� in the
time propagation has been shown to improve ionization
probabilities compared to vc � 0 [16]. Since n�x�dx is the
probability to find an electron at x in dx, the density of the
zero-electron system vanishes: n0 � 0. Assuming the same
adiabatic dependence of �A�t� on N�t� the pair density is
approximated as

 �A �
�
�1� N��0 � N�1 0 � N � 1
�2� N��1 � �N � 1��2 1 � N � 2

; (10)

where �A � �A�x1; x2; t�, �i � �i�x1; x2� and N � N�t�.
The pair density ��x1; x2� gives the joint probability to
find an electron at x1 in dx1 and an electron at x2 in dx2.
Corresponding to our consideration for the density, the pair
densities of the zero- and one-electron systems are zero:
�0 � 0, �1 � 0. For our model atom, n1�x� is the ground
state density of He�. It is calculated from the solution of
the respective one-dimensional stationary Schrödinger
equation with �ce � 0:5. Consistently we use n2�x� �
n�x; t � 0� where n denotes the density utilized to calcu-
late N�t� in (5). Our adiabatic approximation of gc thus is

 gAc �

8>><
>>:
�

1

2
0 � N � 1

�A�x1;x2;t�
nA�x1;t�nA�x2;t�

�
1

2
1 � N � 2

; (11)

with gAc � gAc �x1; x2; t�. Although for N�T� � 1 one has
gAc � 1=2 which yields the unphysical value P2��T� � 0,
good results are already acquired for N�T� only slightly
smaller or larger than 1, as is shown below.

In this form the approximation recovers the exact corre-
lation function for the ground state. This approximation
can only be valid in the immediate vicinity of the helium
core. However, as pointed out above, this is sufficient to
calculate the correlation integral IAc �T�. The integration
constraints

R
dxin�xi; t�gc�n��xi; xj�i; t� � 0 with i, j 2

f1; 2g are not fulfilled since for jxij> a we have n � 0
and gc � 0 but set gAc � 0. The same densities as in Eq. (5)
are used in the integrand of IAc .

The ground state inputs needed to calculate gAc are
accessible numerically also for more complex systems
than helium. Moreover, in the three-dimensional case the
ground state pair density can be calculated approximately
via one of the well-known approximations for the ground
state correlation function [19,20].

 

FIG. 3. Value of the exact Ic�T� as a function of the number of
bound electrons (left). Value of IAc �T� using exact densities
compared to the exact Ic�T� (right). Results for both laser pulses
are shown together with differently shaped symbols.

 

FIG. 2. Comparison of the integrand of the exact Ic�T� (left)
and the adiabatic approximation IAc �T� (right) for different ef-
fective peak intensities of a � � 780 nm laser pulse.
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The right-hand side of Fig. 2 shows the integrand of
IAc �T� using the exact densities. The qualitative agreement
with the exact integrand of Ic�T� is good. Furthermore, the
maximum and minimum values of the integrand are close
to the exact values. This is a strong indication that the
adiabatic approximation of gc captures the essential fea-
tures which contribute to Ic. In the right plot of Fig. 3 the
adiabatic approximation IAc is compared to the exact values
Ic for both laser pulses as a function of N�T�. The adiabatic
approximation exhibits a very similar dependence on N as
the exact values. However, forN�T� 	 1:0 the values differ
from the exact results. In our adiabatic approximation for
N�t� � 1 all correlation effects vanish, as can be seen from
(11). This might indicate the necessity to include memory
effects in a refined approximation of �.

Figure 4 shows the ionization probabilities calculated
from the exact and the LK densities using the approxi-
mated IAc �T� for the � � 780 nm laser pulse. Single ion-
ization probabilities agree very well with the exact proba-
bilities from the TDSE for both exact and LK densities.
The systematically too low values for Ic � 0 are corrected.
Double ionization probabilities show a good agreement for
high intensities. For low intensities the double ionization
probabilities (and IAc ) are so small that already small devi-
ations of IAc from the exact Ic lead to relatively large
deviations in the logarithmic plot of the ionization proba-
bilities and to minima and maxima in the double ionization
probability. Since gAc � 1=2 at N�T� � 1, the adiabatically
corrected probabilities for the two laser pulses examined
show a minimum at intensities when the second derivative
of the exact probabilities changes its sign at the onset of the
knee structure [where N�T� ’ 1]. Comparison with the
values for Ic � 0 (Fig. 1) evidences a significant improve-
ment of the TDDFT ionization probabilities using our
approximation of the correlation function (11).

In summary, to acquire the exact, multiple ionization
probabilities of atoms in strong laser fields from time-
dependent density-functional calculations, knowledge of
the correlation integral Ic�T� is vital. For a one-

dimensional helium model atom, an adiabatic approxima-
tion of the correlation function gc close to the helium core
yields an approximation of Ic which agrees qualitatively
and quantitatively well with the exact Ic. The exact single
ionization probabilities and the knee structure in the double
ionization probability are reproduced. The (pair) density of
helium after the laser pulse can be approximated by a linear
combination of atomic and ionic ground state (pair) den-
sities using the fractional number of bound electrons. This
method opens the possibility to apply the adiabatic ap-
proximation in three dimensions and to the ionization of
more complex atoms.
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FIG. 4. Single and double ionization probabilities for exact and
LK densities using the adiabatic approximation of the correlation
integral IAc compared to the TDSE solution for a � � 780 nm
laser pulse.
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