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The successes of the nuclear shell model in explaining the stability properties of magic nuclei are
challenged by the observation of rotational bands for which the sequential filling of single-particle energy
levels of the spherical shell model are not respected. This Letter proposes criteria for identifying the shell-
model configurations appropriate for describing such bands of states.
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A suggestion by Morinaga [1] that many excited J� �
0� states of light nuclei are the lowest states of excited
rotational bands is now well established. Many low-energy
rotational bands and even superdeformed bands have been
observed in closed-shell [2,3] and other light nuclei. The
appearance of states of different deformation in a single
nucleus is known as shape coexistence [4].

Morinaga observed that, while the 16O ground state may
be predominantly a spherical closed-shell state, excited
states are no longer in closed-shell configurations, and,
like the states of doubly-open-shell nuclei, they could be
seriously deformed.

Many studies have explained why multi-particle-multi-
hole states occur at low energies [5–12]. Nevertheless,
from a conventional spherical shell-model perspective,
the appearance of multi-particle-multi-hole states in the
low-energy domain is potentially disturbing. Even if
understood, it is disturbing because it suggests that a
conventional shell-model calculation with basis states re-
stricted to a single valence shell becomes questionable
when there is little or no energy gap between valence-
and higher-shell configurations. A commonly accepted
way out of this dilemma is to regard the states of rotational
bands with deformations very different from those of the
valence-shell states as intruder states [8,13] that couple
only weakly to the valence-shell states.

Insights into shape coexistence, gained from mean-field
models [9,11], suggest the use of deformed bases for the
shell model. In general, this causes incompleteness prob-
lems and the loss of coupling schemes and other machinery
associated with conventional harmonic-oscillator bases.
However, as this note shows, such problems are circum-
vented and shape coexistence can be understood by the use
of restricted mean-field calculations within the framework
of a symplectic-model basis for the shell model. This
understanding has important implications for the selection
of a truncated shell-model space.

The standard basis for the nuclear shell model is pro-
vided by the independent-particle model of nucleons in a
spherical-harmonic-oscillator potential. In application to a
light nucleus, a many-nucleon Hamiltonian is diagonalized

in the finite space of the lowest-energy major shell. For a
closed-shell nucleus, such as 16O, the lowest major shell
contains only the closed-shell state which can be regarded
as a 0p-0h, particle-hole vacuum, state. Thus, for 16O, the
standard shell model predicts the lowest-energy excited
states to be negative-parity 1p-1h states in which one
nucleon is promoted from the occupied 1p single-particle
shell to the 2s-1d shell. In fact, the first excited state of 16O,
at 6.05 MeV, is of positive parity and is the lowest state of a
rotational band. Examination of the properties of this band
of states and shell-model calculations in large multishell
spaces indicate that the 6.05 MeV state is a 4p-4h state
[1,5–12].

It is well known that low-energy states of doubly-open-
shell nuclei tend to belong to rotational bands. Thus, if an
np-nh state of a closed-shell nucleus is considered as a
product of open-shell configurations, a significant lowering
of the energies, due to deformation correlations, and the
appearance of rotational states is to be expected.

In constructing a model of rotor bands in light open-shell
nuclei, Elliott [14] considered a Hamiltonian

 Ĥ��� � Ĥ0 �
1

2
�
X

ij

Q̂�i� � Q̂�j�; (1)

where Ĥ0 is an independent-particle spherical-harmonic-
oscillator Hamiltonian, Q̂�i� is the mass quadrupole tensor
for nucleon i, and � is a coupling constant. When Q̂ is
replaced by its restriction, Q̂, to a single harmonic-
oscillator shell, and � is replaced by a suitable effective
coupling constant �, the resulting Hamiltonian,

 Ĥ ��� � Ĥ0 �
1

2
�
X

ij

Q̂�i� � Q̂�j�; (2)

has a spectrum of rotorlike bands; this is because Ĥ ��� is
diagonal in a basis of states with the quantum numbers of
the subgroup chain

 

U�3� � U�1��SU�3� � SO�3� � SO�2�
N��;�� N ��;�� L M

(3)

where U(3) is the symmetry group of the spherical har-
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monic oscillator. The energy-level spectrum of Ĥ ��� is
determined from the value

 h����jĈSU3j����i � 4	�2 � ����2 � 3�����
 (4)

of the SU(3) Casimir invariant

 Ĉ SU3 � Q̂ � Q̂� 3L̂ � L̂; Q̂ � Q̂ �
X

ij

Q̂�i� � Q̂�j�:

(5)

Thus, if N@! is an eigenvalue of Ĥ0, the energy levels of

Ĥ ��� are given by

 EN����LM � N@!� 2�	�2 � ����2 � 3�����


�
3

2
�L�L� 1�: (6)

The Hilbert space of the nuclear shell model is a sum of
U(3) subspaces combined with corresponding spin-isospin
states. This suggests that an appropriate space for a shell-
model calculation of nuclear states, which include rota-
tional states, is given by a suitably selected set of U(3)
irreps (irreducible representations). Thus, we consider a
procedure for assigning an energy-ordering to the U(3)
subspaces of the shell model.

The harmonic-oscillator shell-model space also has a
natural decomposition into irreducible subspaces of an
Sp�3;R� symplectic algebra [15,16]. This Lie algebra in-
cludes infinitesimal generators of nuclear deformation and
unrestricted nuclear quadrupole moments. From a collec-
tive model perspective, each of its irreps comprises an
infinite rotational band of states coupled to multiple-
phonon giant-monopole and giant-quadrupole excitations.
From a shell-model perspective, each Sp�3;R� irrep is an
infinite tower of many U(3) irreps based on a lowest-grade
U(3) irrep of the Elliott type [14], where the grade of a U(3)
irrep is given by its harmonic-oscillator energy N@!.
Moreover, every Sp�3;R� irrep in the shell model is
uniquely defined by its lowest-grade U(3) subirrep and is
characterized by the N���� quantum numbers of this U(3)
irrep. Thus, there is a unique projection from any Sp�3;R�
irrep onto its lowest-grade U(3) irrep, and, as a conse-
quence, the U(3) model provides a meaningful effective
shell-model image of a more complete symplectic model.
It follows that a subspace of the shell model that includes a
suitable set of lowest-grade U(3) irreps is a tailor-made
effective shell-model space for the description of shape
coexistence. Note that, in working within an effective
model space, effective charges and other renormalizations
are required to account for the neglected coupling to higher
shell-model configurations.

Variational criteria for ordering the lowest-grade U(3)
irreps by increasing energy are now defined as follows. Let
j’N����i denote the highest-weight state for a lowest-grade
U(3) irrep N���� and let j’N�����a; b; c�i denote the same
state deformed by a stretching operation applied to each of

its spatial coordinates;, i.e., xi ! axi, yi ! byi, zi ! czi.
The three-dimensional manifold MN���� of states
fj’N�����a; b; c�ig with real values of the deformation pa-
rameters (a, b, c) is known [17] to span a subspace of the
Sp�3;R� irrep based on the U(3) irrep N����. Now, if
EN���� denotes the minimum value of the expectation value
of a realistic nuclear Hamiltonian for the states of MN����,
it is meaningful to order the U(3) irreps by increasing
values of EN����; this makes it possible to select a subset
of low-energy U(3) irreps to form a finite-dimensional
effective shell-model space.

Such variational calculations have yet to be attempted.
However, we show here that a simple parameter-free
model, based on the methods of Ref. [18] and the coupled
SU(3) model of Ref. [19], indicates the kind of results that
can be expected. The model gives a qualitative indication
of which np-nh states are likely to contribute to the low-
energy states of nuclei.

We consider the Hamiltonian Ĥ���, which is quadratic
in the elements of the sp�3;R� algebra, and recall that the
Q̂ � Q̂ interaction of this Hamiltonian is designed for use
within the framework of a mean-field approximation. For
the Hamiltonian Ĥ���, the mean field experienced by
nucleon i due all other nucleons when the nucleus is in
the minimal-energy state j’i of the manifold MN����is
given by

 U�ri� �
1

2
m!2r2

i � �Q�i� � h’j
X

j

Q�j�j’i; (7)

where 1
2m!

2r2
i is the spherical-harmonic-oscillator poten-

tial. Thus, if the density distribution � of the state j’i is
nonspherical, the mean field U will also be nonspherical
and be expressible, in terms of Cartesian coordinates (x, y,
z) for the vector r, in the form

 U�r� �
1

2
m�!2

1x
2 �!2

2y
2 �!2

3z
2� (8)

of an ellipsoidal harmonic-oscillator potential. For self-
consistency, the equipotential surfaces of U should have
the same ellipsoidal shape as the equidensity surfaces of �.
This condition fixes the magnitude of the coupling constant
to a value given, to leading order in �=N, by � � @!=�4N�
[20], where N � n1 � n2 � n3 is the number of quanta in
the state j’i of harmonic-oscillator energy n1@!1 �
n2@!2 � n3@!3 (including the zero-point energy).

From the relationship between the symplectic and U(3)
models, we now infer a corresponding value of the cou-
pling constant appropriate for the effective U(3)

Hamiltonian Ĥ ��� of Eq. (2). First, as observed above,
any state in an sp�3;R� irrep can be mapped, by projection,
to its lowest-grade U(3) irrep. Thus, an appropriate value of
the effective coupling constant � is determined such that,

when used in the Hamiltonian Ĥ ��� restricted to the
lowest harmonic-oscillator shell, it will give the same
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mean-field results as the Hamiltonian Ĥ��� in the unre-
stricted shell-model space. Suppose, for example, that j’0i
is the SU(3) state that maps to j’i under the above-
mentioned scale transformation. Then, the value of the
effective SU(3) coupling constant � is defined by setting

 h’0jĤ ���j’0i � h’jĤ���j’i: (9)

This gives (to leading order in �=N)

 � � 2� �
@!
2N

: (10)

Such a self-consistency argument also gives the effective
charge for electric quadrupole transitions in the SU(3)
model to be twice its unrenormalized value.

Consider, for example, the spectrum of Ĥ ��� for some
lowest-grade U(3) irreps of 16O. The 0p-0h closed-shell
state of 16O spans a one-dimensional lowest-grade U(3)
irrep N�0; 0� with N � 36. Excited 2p-2h states are ob-
tained by tensor coupling the �2; 0�  �2; 0� SU(3) irreps for
two-particles in the 2s1d shell with �0; 1�  �0; 1� irreps for
two holes in the 1p shell. The leading irrep (the one with
largest value of the SU(3) Casimir operator) in this tensor
product is the irrep N��;�� � 38�4; 2�. The leading irreps
for 4p-4h, 6p-6h, and 8p-8h excited configurations are
listed in Table I.

The table shows that, if the harmonic-oscillator unit of
energy is assigned the standard value @! � 41A�1=3 MeV,
required to give observed nuclear radii, the lowest-energy
positive-parity excited state of 16O in the model is at �
5 MeV and comes from the leading 4p-4h SU(3) irrep
[negative-parity excitations are not considered here]. This
result is remarkably close to the observed excitation en-
ergy, 6.05 MeV, of the first excited state of 16O. The
experimental and theoretical spectra, for the predicted
value of �, are shown in Fig. 1. All observed energy levels
have counterparts in the model and E2 transition rates
between them are predicted with the correct orders of
magnitude. However, the observed E2 transitions imply
minor mixing of the U(3) irreps as expected for a more
realistic interaction. Thus, as a zero-order approximation to
the shell model, the model appears to be successful in
identifying the essential U(3) irreps required for a descrip-
tion of low-energy positive-parity states in 16O.

We emphasize that the simple no-parameter model pre-
sented is not expected to give a quantitative description of
the low-energy states of any nucleus. Its purpose is to
initiate the development of criteria for the selection of
appropriate effective shell-model spaces in which realistic
shell-model calculations can be carried out. Thus, the de-
tailed predictions of the model are not intended to be taken
literally. A major cause of uncertainty is the sensitivity of
the results to the value of �, as Fig. 2 shows. This figure
also shows another lowest-grade U(3) irrep with
N��;�� � 48�24; 0� whose excitation energy falls ex-
tremely rapidly with increasing values of � and, for the
value given by the above self-consistency argument, falls
below the energy of the 0p-0h ground state. However, the
assumptions on which the above estimate of � are based
make little sense for an irrep with such a large value of
�=N, which is why the 48(24,0) irrep is not included in
Table I. Such an irrep corresponds to a highly elongated
nuclear shape that is not at all well described by a mean
field with only monopole and quadrupole components.
Moreover, the leading order self-consistency estimate is
clearly an overestimate for an irrep with such a large value
of �=N. A better estimate, for small �, would appear to be
given by � � @!

2N �1�
�

2N�. Excitation energies for this ad-
justed coupling constant are indicated in Fig. 2. The
strength of the Q �Q interaction has been analyzed by
Dufour and Zuker [21]. However, for present purposes,
what is needed is an accurate determination of the way it
scales with deformation. A natural strategy, within the
framework of the present approach, for determining the
appropriate dependence of � on N��;�� would be to
compare the energies given by Eq. (6) as functions of �
with those of mean-field calculations, with realistic inter-
actions, restricted to corresponding Sp�3;R� irreps, as
described above.

TABLE I. Parameters and excitation energies of leading
lowest-grade U(3) irreps for 16O.

Nucleus np-nh N��;�� ĈSU3 EN����exc =@! EN����exc (MeV)
16O 0p-0h 36(0,0) 0 0 0

2p-2h 38(4,2) 184 0.79 12.9
4p-4h 40(8,4) 592 0.30 4.9
6p-6h 42(10,4) 792 1.29 20.9
8p-8h 44(12,4) 1024 2.18 35.5
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FIG. 1. Positive-parity energy levels of the model with L � 6
for 16O in comparison with those observed below 15 MeV.
Energy levels associated with an irrep N���� are shown in
groups. Reduced E2 transition rates are indicated (in e2fm4

units) beside the arrows. (The data are extracted from the
ENSDF data base, revision of Mar 8, 2002.).
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There is now substantial evidence, independent of the
predictions of the model, that particular combinations of
4p-4h states fall lower in energy than even the 1p-1h states
in 16O. This is not an isolated example as revealed by the
observation of shape coexistence in many nuclei [4]. In
heavy nuclei, there is strong evidence to suggest that well-
deformed states from high-lying shells fall well below
those of the 0p-0h states. For example, Jarrio et al. [22]
showed that while a deformed independent-particle
(Nilsson) model can explain the ground-state rotational
bands of the Erbium isotopes, a description of these bands
in terms of the spherical shell model must be dominated by
states from Sp�3;R� irreps based on lowest-grade U(3)
irreps with �2���� � 200. Carvalho [18] showed that
such SU(3) irreps belong to N��;�� irreps of U(3) with
N * N0 � 10, where N0 is the value of N for the 0p-0h
spaces of these nuclei. In a symplectic-model calculation
of the 166Er ground-state rotational band, Bahri [23] found
that the lowest-grade SU(3) components were not even the
dominant components of the states that emerged; in fact,
the dominant components were from shells of order 8
higher than those of the lowest-grade SU(3) irrep, which
was already some 10 shells higher than the 0p-0h shell for
this nucleus. Nevertheless, the lowest-grade U(3) irrep,
with renormalized parameters, provided a remarkably ac-
curate effective model description of this rotational band.

The suitability of an Elliott SU(3) basis [14] for mixed-
shell-model calculations in light nuclei has been empha-
sized by several authors [7,24,25]. Variations of the per-
spective given in this paper have also been expressed
elsewhere [18,22,26]. What is special about this Letter is
a demonstration of the insights into nuclear structure to be
gained from a study of shape coexistence and what can be
achieved by defining an effective shell-model space in
terms of U(3) lowest-grade states.

For application to medium and heavy nuclei, the current
model needs refinement to take account of the spin-orbit

interaction in the definition of spherical shell-model states.
The emergence of SU(3) as a relevant coupling scheme for
rotational states in heavy nuclei has been observed in the
calculations of Sun et al. [27]. Obvious possibilities for the
extension of the present approach is by use of the pseudo-
SU(3) [28] and pseudo-Sp�3;R� models [29] and by the
methods of Refs. [18,22].
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