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Inhomogeneous Mode-Coupling Theory and Growing Dynamic Length in Supercooled Liquids
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We extend mode-coupling theory (MCT) to inhomogeneous situations, relevant for supercooled liquid
in an external field. We compute the response of the dynamical structure factor to a static inhomogeneous
external potential and provide the first direct evidence that the standard formulation of MCT is associated
with a diverging length scale. We find that the so-called cages are, in fact, extended objects. Although
close to the transition the dynamic length grows as |7 — T,.|~"/* in both the B and « regimes, our results
suggest that the fractal dimension of correlated clusters is larger in the a regime. We derive inhomoge-
neous MCT equations valid to second order in gradients.
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It is becoming increasingly clear that the viscous slow-
ing down of supercooled liquids, jammed colloids, and
granular assemblies is accompanied by a growing dynamic
length scale, whereas all static correlation functions remain
short-ranged. This somewhat unusual scenario, suggested
by the experimental discovery of strong dynamical hetero-
geneities in glass formers [1], has been substantiated by
detailed numerical simulations [2—-6], explicit solution of
simplified models [7,8], and recent experiments [9,10]
where 4-point spatiotemporal correlators are measured.
From a theoretical point of view, our understanding of
supercooled liquids owes much to the mode-coupling the-
ory (MCT) of the glass transition. Although approximate in
nature, MCT has achieved many qualitative and quantita-
tive successes in explaining various experimental and nu-
merical results [11,12]. Despite early insights [13], the
freezing predicted by MCT is often argued to be a local
caging phenomenon, without any diverging collective
length scale. This, however, is rather surprising, since
one expects on general grounds that diverging relaxation
times involve an infinite number of particles in the absence
of quenched disorder, defects, or fixed obstacles [14].
Building upon the important work of Franz and Parisi
[15], two of us (BB) [16] suggested a way to reconcile
MCT with physical intuition. Within a field theoretic for-
mulation of MCT, BB showed that the 4-point dynamic
density correlation function plays the role of 2-point static
correlations in standard phase transitions and is character-
ized by a diverging dynamical correlation length and spa-
tiotemporal scaling laws. BB also proposed a Ginzburg
criterion that delineates the region of validity of MCT,
which breaks down in low dimensions. Still, the field
theory language used in Ref. [16] is not trivially related
to the standard, liquid theory formulation of MCT [11].
Indeed, recent work has shown that the field theory is laden
with subtleties [17-19], in particular, related to the
fluctuation-dissipation relation. The aim of the present
Letter is twofold. First, we show how the results of BB
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may be recovered, corrected, and extended to obtain test-
able, quantitative predictions on absolute dynamic length
scales, entirely within the standard, projection-operator-
based MCT [11]. Our analysis predicts a remarkable scal-
ing behavior that has implications for the geometry of
dynamic heterogeneities. Second, our formulation general-
izes MCT to spatially inhomogeneous situations, of im-
portance in a wide variety of physically interesting
situations that include the study of confined fluids [20]
and the influence of gravity on the dynamics of glassy
colloidal suspensions [21].

In order to proceed, we consider a fluid subject to an
arbitrary external potential U(x), such that the equilibrium
averages [e.g., the static density p(x)] vary in space. The
relationship with the results of BB will be obtained using
this inhomogeneous MCT formalism to compute the re-
sponse of the dynamical structure factor to a localized
external potential. In the limit where the wave vector ¢
associated with the external field tends to zero, a connec-
tion to the 4-point correlator of BB emerges. The dynami-
cal quantities of interest are the density fluctuations 6 p and
the currents J, defined in Fourier space as 6py =

N e —(p) and J = SV k -p;e’® T /m. Follow-
ing, step by step, standard procedures based on the Mori-
Zwanzig formalism [11,22], one can establish the follow-
ing exact equation of motion for the dynamic structure
factor F(k, K,;1) = 1/N<6pk](t)5p;2(0)):

82
WF(kl,kQ;t)+fdk’192(k1,k’1)F(k’,k2;t)
d
+fdk’l]tdt’M(kl,k’l;t—t’)WF(k’,kz;t’)=0, (1)
0

where Q?(ky, k1)) = (kgT/m)(k, 'k/1)<pk|7k’l »S1(ky, k)
[with S™!(k,, k,) the inverse of F(k;, Kk, t =0)], and
M(Kk, K,; 1) is a memory kernel which can be expressed

in terms of the fluctuating force. Performing the same
factorization approximations used to derive standard
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MCT [11,22], but without assuming translation invariance,
we reduce this memory kernel to two-body correlation
functions and obtain an inhomogeneous mode-coupling
theory (IMCT). The corresponding IMCT equations are
rather cumbersome (although straightforward to derive)
and will be presented elsewhere [23]. By construction, in
the limit U(x) — 0, they reduce to standard MCT.

In order to obtain somewhat tractable expressions, one
can consider weakly inhomogeneous situations U(x) <
kgT, such that one can expand all quantities to first order
in U/kgT. The aim is to compute the sensitivity of the
dynamical structure factor to a small perturbation of arbi-
trary spatial structure, in particular, localized perturba-
tions, which we can always decompose in Fourier modes:
[6F(x, y, 0/6U@)]ly=o = [ dkdge *OV+ialt—s) x
Xq(K, 1), where x,(k, 1) = [6F(k,q + Kk, 1)/6U(q)]ly=o
is the response of the dynamical structure factor to a static
external perturbation in Fourier space. For a localized
perturbation U(x) = Uyd(x), one finds SF(Kk,y, 1) =
Uy [ dqe'® x4 (k, 1) [24]. This susceptibility is related to
|

9°xq(k, 1)
ot mS(k

@2m)’

where Fy(k, t) is the usual MCT solution for U = 0,
vk, ky) =k - Kyek)) + K - kye(ky) and Mgk, 1) =
kgTp/2m [dK'/Q2m) vi (k' k — K')Fo(k', )Fy(|k" —

K|, 7) are the standard MCT vertex and memory kernel,
respectively [22]. The source term Sq(k, 1), whose precise
form will be presented elsewhere [23], depends on
Fo(k, t = 1) and static correlation functions; the value of
the dynamic length scale and the critical properties of x,
are, however, independent of the precise form of this
source term. The above equation is of the type Lqx, =
Sq, where £q is a linear operator, the structure of which, in
particular, its smallest eigenvalue, contains the information
we want to extract. One should first note that, in the limit
q = 0, the operator L simply encodes the change of the
MCT dynamic structure factor when the coupling constant
(i.e., the density or the temperature) is shifted uniformly in
space. This remark allows one to compute y,(k, ¢) from
standard MCT results in the 8 and « regimes:

S(k)h(k) — —
gp(g?=015) 1p=c¢
XO(k» t) = b
gga,k(q-a) Ta = €

dk’
j v (K K = Ky (k — K, q + K)xg(K, £ — ) Fo(lk — k'l = )

—1/2a

—1/2a—1/2b

3)

In the above, A(k), a, and b, are standard MCT notations
describing the solution of MCT equations at U = 0 [11,22]
and ¢ is the distance from the MCT critical point 7. The
behavior of the scaling functions at large and small argu-
ments can be found directly by analyzing Eq. (2) or by
scaling: In the early B regime u = t/75 — 0, the & depen-

a 3-point density correlation function in the absence of the
perturbation. Although different from the 4-point functions
considered previously in the literature, x,(k, #) is expected
to reveal the existence of a dynamical correlation length of
the homogeneous liquid (see [10,25] for the particular case
q = 0) and to have a similar critical behavior. The physical
reason is that spontaneous dynamical fluctuations mea-
sured by the 4-point function and induced dynamical fluc-
tuations measured by x4(k,?) are intimately related.
Intuitively, speeding up or slowing down the dynamics at
one given point (i.e., by changing the local density) should
perturb the dynamics on a length scale ¢ over which
spontaneous dynamical fluctuations themselves are corre-
lated. As shown below, this is indeed the case within MCT.
The formal reason is that, precisely as for standard phase
transitions, a certain linear operator (the susceptibility) that
governs both the correlation and the response of the system
becomes critical at the transition (see [25] for a diagram-
matic interpretation). Differentiating Eq. (1) with respect
to U(q) and then setting U(q) = 0, the final equation for
the susceptibility y,(k, 7) reads:

kg Tk> Ixq(k, ¢ kgTpk
+-£ TX Xq(k, t)+ftdt’M0(k,t—t’)7Xq;t/ ) fd’iB P
0

mlk + q|
aF(lk +ql,7)

- Syk, 1), (2)

{
dence should drop out; hence, gz(0, u) * u®. The matching

between « and B regimes 1mplles gp(0, u) = u’ atlarge u,
whereas g, (1) < S(k)h(k)u® at small u. How are these
results affected when q # 0? The analysis is simple for
Xq(k, %) in the glass phase, where straightforward ma-
nipulations of Eq. (2) allow one to show that it satisfies the
matrix equation (I — M) - x4(k, ) = Sg with a source
term that is regular and of order one in the limit ¢ — 0 and:

G(k)G(q +k,)S(k; —k;)
2k |k, +ql
Xy, (Ky, k| —Kp)vg 1q(Ky

Mq(kl’kZ):p fkl—kz

—k,, q+ky),
“4)

where G(k;) = S(k;)(1 — fx,) and fi is the nonergodic
parameter. Interestingly, the matrix M, is exactly the same
as the one obtained from the resummation of the ladder
diagrams in the field theoretical framework of BB. Note
also that the source Sy’ is irrelevant provided it is not
orthogonal to the lowest eigenvector of M. For ¢ =0
and & <0, the largest eigenvalue of M, was shown by
Gotze to be A = 1 — O(\/—¢) [26] and its right eigenvec-
tor is S(k)h(k). The correction §A to this eigenvalue at g —
0 can be computed by perturbation theory. By symmetry,
one expects that, in general, A = —I'¢?, where I is a
certain coefficient, leading to y,(k, 00) S(k)h(k)/
\/_ + I'g?) [16]. In the schematic limit where S(k) is
sharply peaked around k = kg, with a small width AK, one
can compute I" exactly; one finds that I' is positive and o
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AK™2. We have performed a microscopic calculation that
includes the full S(k) and have determined numerically that
for the hard-sphere structure factor computed within the
Percus-Yevick approximation at the MCT critical density
¢é. = 0.515, T = 0.072¢>. For more realistic hard-sphere
structure factors, I may be as large as I' = 0.302. We have
not been able to show in full generality that I' should
always be positive. A negative I would predict a remark-
able ‘“modulated” glass transition, with the nonergodic
factor displaying periodic oscillations in space [27].

The analysis of the full temporal behavior is more
involved. The operator that becomes critical at the transi-
tion again turns out to be the same as the one considered in
BB. We find that (I — MC)Xq(tsl/z") = sq(tsl/za), where
M, is the matrix M at the transition and the new source
term is of order one in the limit ¢ — 0. As a consequence,
one finds [23]:

T 2
Xq(K, 1) = S(k)h(k)gﬁ;(%,tsl/z“), 5)

1

Je +T'q?
where ¢%gp(Tq?/ /e, te'/??) = (e + Tg?)llsy(te'/?)),
where (l| is the left eigenvector conjugated to S(k)h(k).
The analysis of x4 (K, 7) in the a-relaxation regime is subtle
and will be detailed elsewhere [23]. The results turn out to
be different from the naive guess presented in BB. We have
established that, for small ¢ and fixed &,

ETq*/e) t
FErTateln) O

with E a certain regular function with Z(0) # 0 and
E(v > 1) ~ 1/v such that y, behaves as ¢g~* for large
ge "4, independently of e. Also, gqi(u<<1)=
S(k)h(k)u®, as to match the B regime, and g, (u > 1, k) —
0. In order to confirm the above analytical predictions, we
performed a numerical integration of both the standard
MCT equation and Eq. (2) in the schematic Leutheusser
approximation [28]. We neglected all k dependence, while
keeping ¢ dependence to lowest order [24]; replacing
Folk, 1) = F(1),  xq(k, 1) = xq(0), Mok, 1) — 4AF>(1),
Sq(k, t) = F(t), and, finally, the memory kernel in the
fourth term of Eq. (2) by 8A(1 — ¢?)x,(1)F(1). The result
is shown in Fig. 1. Note that the scaling variable is still
g*¢~ /2 in the « regime, rather than g>e ™' as surmised in
BB [16]. The physical consequence of the above analysis is
the existence of a unique diverging dynamic correlation
length & ~ +/T'|&|~/* that rules the response of the system
to a space-dependent perturbation. The analysis of the
early B regime where r < |&|~!/2¢ shows that this length,
in fact, first increases as /2 and then saturates at &.
Furthermore, Eq. (6) indicates that, although the integrated
dynamic correlation xq—o(k, #) increases in the a regime
as =@2a (from £71/2 for t = Tgto e ! for 1= 17,),
the dynamic length scale itself remains fixed at ¢&.
Interestingly, this suggests that, while keeping a fixed
extension &, the (fractal) geometrical structures carrying

Xq(k, 1) =

the dynamic correlations significantly “fatten” [29] be-
tween 75 (where the structures could correspond to the
strings reported in recent simulations [5,30]) and 7, where
more compact structures are expected, as indeed suggested
by the results of Ref. [31]. For 75 <t < 7,, we expect a
crossover between dense and dilute structures at a new,
time-dependent crossover length [23].

Starting from the general IMCT equation (1), one could
have chosen to follow a slightly different path and only as-
sume that the length scale € of the imposed inhomogene-
ities is large. Performing a gradient expansion to order €2,
one obtains an equation on the space-dependent structure
factor F(K, r, t). This space-dependent Ginzburg-Landau-
like MCT equation has one part identical to the standard
MCT equation (with space-dependent coefficients) plus
nonlinear contributions (see [23]) containing a V2F term
and, interestingly, a Burgers nonlinear term (VF)? [32].
When inhomogeneities are small, one recovers Eq. (2)
above.

In summary, we have extended the standard framework
of MCT to inherently inhomogeneous physical situations.
This allowed us to compute the response of the dynamical
structure factor to spatial perturbations. The case of a
localized perturbation shows directly that the dynamical
structure factor is affected on a dynamic length scale ¢ that
diverges (I — T,.)~" as T. is approached. Note that &, as in
ordinary critical phenomena, diverges only at T, reflecting
the critical fragility of the system right at the transition. It is
therefore clearly distinct from the diverging viscous length
/M7, that sets the scale below which the liquid sustains
shear waves [33], which is infinite in the whole glass phase.

Our most striking predictions are that (i) multipoint
functions violate Ornstein-Zernicke scaling in the « re-
gime and, instead, have a much stronger ¢ dependence,
encoded in Eq. (6), and (ii) the dynamical length scale &
has a rather modest growth with thermodynamic control
variables that is reflected in the small value of the exponent
v = 1/4, different from v = 1/2 surmised in BB [34].
This slow growth is in harmony with our current experi-
mental understanding of the magnitude of cooperative
length scales at the glass transition. It should be also
remarked that our work predicts that ¢ governs both the
B and « relaxation regimes, showing that the standard
interpretation of the 8 regime as the vibrations of particles
trapped in independent cages formed by nearest neighbors
is somewhat misleading: As the MCT transition is ap-
proached, & grows and the “‘cages” become more and
more collective. Between 74 and 7, the dynamical length
does not grow, but the geometrical structures responsible
for dynamic fluctuations thicken with time [29], and this
leads to the increase of y,(k, 7). The detailed and novel
predictions outlined above may be tested by molecular
dynamics simulations, provided system sizes are large
enough to explore the full scaling window. Experi-
mentally, xq(K, #) could be accessible in colloids by use
of an optical tweezer array, imposing a periodic dielectric
force on the particles.
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FIG. 1 (color online). Numerical solution of the schematic
IMCT equations for T > T, (see [23]). Main plot: x,(z) for dif-
ferent q as a function of time and for £ = 107°. From top to
bottom: ¢ = 0, 0.06, 0.2, 0.4, and 1. Note that the shape of x(t)
in the a regime is independent of q, as predicted by Eq. (6). We
have, in fact, checked that the predicted scaling is very well
obeyed in that region. Inset: € Y, (q) = &x,(t = 7,) as a func-
tion of ge /4 in log-log, for different ¢’s and €’s. Note the g~*
behavior for large ge~!/4, as indicated by the dashed line.

As argued in the introduction, a diverging length scale at
the MCT transition is expected on general grounds;
although not obvious at first sight, the MCT transition is
akin to a standard phase transition, except that the order
parameter is itself a 2-point correlation function, and,
therefore, susceptibilities and correlation functions dis-
playing critical behavior are 3- and 4-point objects.
Physically, MCT can be interpreted as describing the ap-
pearance of marginally metastable states that slow down
the dynamics. These states are characterized by soft modes
that involve a diverging number of particles moving in
correlated clusters. The physical idea put forward here is
that the intrinsic size and characteristics of such clusters
may be probed by an external potential that pins the
particles over an extrinsic length scale, which may be
freely and independently tuned.
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