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Key manifestations of the glassy and liquid states, such as viscous flow and structural relaxation, occur
spatial and temporal heterogeneously, within highly localized rare events, termed shear transformation
zones. Characterization of these basic entities with respect to thermal activation and mechanical response
is vital for understanding the rheology of glasses across length scales. This is achieved in classical
molecular dynamics computer simulations on the model glass, CuTi, by determining the activation energy
barrier and plastic yield strain of individual shear transformation zones as a function of size and external
stress loading. Sizes of �140 atoms are identified to be especially energetically favorable with an
activation energy barrier of �0:35 eV. Using these parameters, a rheology model is proposed to
quantitatively explain viscosity.
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Identification of physical processes, which are respon-
sible for dynamics and rheology in liquids and glasses, has
attracted interest of numerous researchers during the past
century. While first kinetic theories for viscous flow in
liquids were based on the presumption of homogeneous
flow [1] at vanishing shear modulus [2] in similarity to
gases, it was first Frenkel [3] to point out analogies to
solids, viz., a nonvanishing shear modulus [4] at compa-
rable atomic packing densities. Both aspects have recently
attracted renewed scientific interest due to the discovery of
a highly heterogeneous dynamics on temporal and spatial
time scales in melts and glasses [5,6]. Despite this rather
long history and extensive experimental and theoretical
efforts undertaken during the past two decades (see, e.g.,
[7–10] and references therein), the physics of melts and
glasses is generally considered one of the great unresolved
problems of condensed matter physics [11,12]. The main
reason for this surely lies in the lack of structural order and
the large number of nonreducible degrees of freedom in-
volved, when compared to the crystalline counterparts.
However, recent progress in experimental [13] and compu-
tational [14] methods have contributed to improve
understanding.

Significant conceptual improvements to relate structure
and energetics resulted from employing the concepts of
potential energy landscapes (PEL) [15] to glasses and
liquids by Debenedetti and Stillinger [16], viz., by consid-
ering the potential energy as a function of a generalized
configurational parameter space. This allows for a natural
interpretation of many materials properties, such as fragil-
ity [17] or relaxational dynamics, as will be discussed in
more detail below. To explain plastic deformation, Johnson
and Samwer [18] recently merged this picture with Argon’s
concept of shear transformation zones (STZs) [19], which
recently received much promotion due to the works of Falk
and Langer [20–22] and others [23,24]: in the zero tem-
perature limit, shearing of a macroscopic glassy solid is
basically interpreted as being composed of individual

highly localized shear events, which are activated, once
the stress level within individual STZs reaches its corre-
sponding yielding stress. However, a quantitative descrip-
tion remained unclear.

Inspired by these previous works, the present investiga-
tion aims to give a quantitative model for thermally acti-
vated anelasticity and plastic flow in glasses and liquids,
respectively, at sufficiently low temperatures at moderate
stresses, viz., in the absence of shear bands. We base our
work on the assumption that the energetics within an
individual STZ under applied shear stress can be described
by a PEL, as schematically depicted in Fig. 1: before an
STZ is thermally activated, its generalized configurational
coordinates reside within the left local minimum, perform-
ing thermal vibrations, as well as configurational changes
within the � relaxational dynamics. Flipping of an STZ to
the second major local minimum occurs, once the corre-
sponding soft vibrational mode receives enough thermal
energy, E�A, to be activated. Clearly, E�A is reduced, as the
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FIG. 1. Schematic illustration of the potential energy land-
scape of an individual STZ under applied shear stress: while
activation of plastic shear events (� relaxation) requires energies
of E�A, additional processes (� relaxation) which are not capable
of significant shear deformation occur within the STZs. External
shear stress tilts the potential energy landscape.
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stress level on the STZ (i.e., slope of the elastic energy
contribution in Fig. 1) increases.

Classical molecular dynamics (MD) simulations were
preformed on the model glass, Cu50Ti50, using a highly
realistic embedded atom method (EAM) [25] interatomic
potential, as parametrized by Sabochick and Lam [26]. To
enable a correct description of excited states, the short
range pair interaction parts of the potential were splined
to the Ziegler-Littmark-Biersack universal potential [27]
for distances smaller than � 1:6 �A, as described before
[28]. Amorphous cells, composed of 4500 atoms total [29],
were prepared by quenching from melt (6000 K) with rates
of 0:1 K=psec at zero pressure and periodic boundaries
down to 10 K, using velocity and box rescaling algorithms
of the Berendsen type [31] with time constants, �T �
300 fsec and �P � 100 fsec, respectively. During quench-
ing, both volume and enthalpy of the cell clearly showed
the signatures of the glass transition, which occurred at �
610 K. Amorphicity is additionally verified by evaluating
the pair and angular distribution functions, respectively,
which indicate the absence of long-range translational and
orientational order. Successive heating and quenching
cycles fail to further reduce the cell energy, which indicates
a highly relaxed amorphous configuration of the cell. This
is additionally corroborated by monitoring the usual time
dependence of the atomic mean square displacements [32].

To investigate plastic strains as a result of excitation-
induced shear events, the cell is in the following loaded
with a constant biaxial compressive stress,�, in the x and y
directions, while zero stress is maintained in the z direc-
tion. A Berendsen-type of pressure control [31] with a
large enough time constant, �P � 100 fsec, prevents the
occurrence of artificial oscillatory responses—in particu-
lar, during the lifetime of an excitation. Plastic deforma-
tions are characterized by changes of the cell shape, viz.,
the plastic strain in z direction, �zz, which additionally has
been corrected for possible changes in cell volume due to
configurational changes within the amorphous CuTi.
Excitations are introduced into the system by exposing
all atoms within a radius R of an arbitrary chosen central
point, ~r � �x; y; z� [a region, which we call ‘‘excited region
(ER)’’ in the following] to Gaussian white noise of a
predefined energy, EE, while the rest of the atoms are
thermostated towards 10 K using, again, a Berendsen
[31] temperature control with �T � 300 fsec. This is
achieved either (i) by assigning Gaussian random veloc-
ities of energy EE to these atoms, or (ii) by randomly
displacing these atoms according to a Gaussian distribu-
tion. In the latter case, the standard deviation of the dis-
placements, �, were chosen to correspond to a potential
energy of EE according to the high temperature limit of a
local Debye-Waller-like treatment [33], h�2i � 3@2EE

mk2
B�2 ,

where � � 384 K [34], m, and kB denote the effective
Debye temperature, the atom mass, and the Boltzmann
constant, respectively. Both cases, (i) and (ii), result in

excitation of those vibrational modes of the system,
which—at least partially—overlap with the ER. This
way, only highly localized modes, which are located com-
pletely within the ERs [which we call ‘‘internal modes’’
(IM) in the following], end up with the specified energy,
EE, at the beginning of the excitations. All other modes
[‘‘external modes (EM)’’], which exceed the ER regions
due to their size or location, become less excited and
transfer energy from the ER to the thermostated regions
of the surrounding matrix. The lifetimes of ER, �, as
defined by a e�1 decay of their energy, are found to scale
inversely with the surface to volume ratio of the ER, viz.
� / R, with ��R � 4 �A� � 67 fsec and ��R � 12 �A� �
130 fsec (Fig. 2). This picture is additionally corroborated
by the good agreement of � with the vibrational period, �O,
of external and internal modes, which we found to be
approximately 110 fsec. As long as �T is chosen signifi-
cantly larger (�T * 200 fsec) than � (or, equivalently, �O)
these results prove to be greatly independent of the choice
of �T in the thermostated regions of the cell, which show an
energy dissipation with a time constant of � 2�T , as ex-
pected (Fig. 2).

The above considerations make clear that this scenario is
perfectly suited to determine the activation energies for
viscous flow, E�A, and the corresponding plastic strains as a
function of the spatial dimensions of the underlying soft
modes—starting from either (i) purely kinetic or
(ii) purely potential energy activations. This is performed
for differently sized ER, ranging from R � 4 �A to R �
12 �A, by monitoring the onset of plastic response during
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FIG. 2. Temporal evolution of the average energy per vibra-
tional mode within spherical regions of specified radii, after
exposition to sufficiently energetic Gaussian velocity excitations
to overcome the activation barriers of at least one soft mode: the
local energies dissipate with time constants, � & 106 fsec, which
are comparable to the period of oscillations within these regions,
while the time constant imposed on the bulk cell by the tem-
perature control (600 fsec) remains significantly larger.
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series of 6000 or more excitations upon increase of EE.
Figure 3 shows a representative example, where Gaussian
velocity excitations with R � 8 �A are introduced into the
system. While significant plastic relaxations start occurring
at excitation energies as low as �0:322 eV, steady-state
flow requires excitation energies, EA, of at least 0:362 eV.
As shown in Fig. 4, EA shows a dramatic drop from
�0:7 eV down to �0:35 eV when increasing the radius
from 4 Å to 8 Å; hereafter it reaches a steady value.
Generally, EA proves to be greatly independent of the
type of excitations, relaxation state, thermodynamic en-
semble (constant pressure or constant volume, respec-
tively), and sign of the applied biaxial stress [35], which
indicates its independence of the simulation details, and
emphasizes its very fundamental relevance.

The considerations above and Fig. 4 clearly imply that
soft modes with a spatial dimension of R � 8 �A (or, equiv-
alently, �140 atoms) [36] need a minimum activation
energy of �0:35 eV per mode for plastically flipping;
here E�A equals EA. Slightly elevated excitation energies,
EE, which exceed E�A, are merely capable of activating the
same soft modes, and thus lead to approximately identical
slopes in Fig. 3. Smaller ERs either lead to flipping of soft
modes within the ER, which require elevated activation
energies, or to activation of soft modes, which exceed the
ERs. In both cases, higher values of EA are necessary.
Larger ER, on the other hand, lead to the activation of
multiple identical soft modes, which all require the mini-

mum activation energy of E�A, thus resulting in a constant
value of EA � E�A in Fig. 4 in this regime. This latter
statement is particularly corroborated by considering the
slopes right at the onset of plastic flow, � � d�zz

dN , for differ-
ently sized ERs, as determined from plots similar to Fig. 3:
� is found to scale approximately linearly with the volume
of the ER, 4�

3 R
3, for R * 8 �A [e.g., ��R � 8 �A� � 2:42�

10�6 and ��R � 12 �A� � 7:77� 10�6 for Gaussian ve-
locity excitations]. In this context it is necessary to point
out that the activation energy of the most unstable soft
modes strongly decreases as a function of stress—one
example is given in the inset of Fig. 4.

We proceed further by discussing the consequences of
our characterization of the minimum energy soft mode
within a simple rheological model for the flow of glasses
in the low-temperature limit, viz., typically around the
glass transition temperature. Assuming that the PEL is
only weakly temperature dependent, we first note that
this most unstable mode will clearly be preferentially
activated by thermal fluctuations, and thus regard it—for
simplicity—as the only unstable mode present in the
system. Furthermore, it is assumed that the temperature
is low enough, that different STZs are independently acti-
vated, while they particularly do not overlap. Using, again,
the biaxial geometry, the viscosity is then given by:
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FIG. 3. Plastic deformations, �zz, in amorphous CuTi at 10 K
base temperature due to Gaussian velocity excitations in random
spherical regions of a fixed radius, R � 8 �A (139 atoms), at
variable excitation energies, EE (selection of representative data
with EE � 4: 0.271 eV, �: 0.284 eV, �: 0.297 eV, +: 0.309 eV,
�: 0.322 eV, �: 0.348 eV, �: 0.362 eV, *: 0.375 eV,
�: 0.388 eV). While plastic relaxations start occurring at en-
ergies as low as �0:322 eV, the activation energy of viscous
flow (�zz becomes a linear function of number of excitations) is
�0:362 eV.
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FIG. 4. Activation energies, EA, for viscous flow due to suc-
cessive shear events within spherical regions of variable sizes
(main plot): for each size, EA is determined during an energy
series of 6000 Gaussian displacement (�) and velocity (�)
excitations each (as shown in Fig. 3). The asterisk symbols (*)
correspond to Gaussian displacement excitations, which were
performed in an unrelaxed cell under constant volume condi-
tions. The inset shows—as an example—the decrease of the
activation energies as a function of stress.
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While � � 0:5 GPa is constant throughout all runs, _�zz is
determined in the following way for thermal activation:
�0 :� ��R � 8 �A� � 2:041� 10�6 measures the average
strain per soft mode, multiplied by the number of soft
modes per nA � 4500 atoms. In the thermal case, for
each available soft mode in the system, such an activation
attempt occurs every half oscillation period with a proba-
bility given by the Boltzman factor, viz., with a rate of
2
�O
e��E

�
A=kB	T�, where E�A � 0:352 eV and a typical value for

�O � 110 fsec are assumed. Thus, the total strain rate is
given by:

 

_� zz � nA�0
2

�O
e��E

�
A=kB	T� � 3:12� 108 1

fsec
: (2)

To countercheck the validity of our model, we compare the
predicted viscosity, 	P, with the corresponding ‘‘experi-
mental’’ value, 	E, which we obtained by monitoring the
steady-state thermal flow of our cell at 650 K, while biaxial
stresses in the x and y directions were applied:

 	P � 0:534 Pa 	 sec and 	E � 0:565 Pa 	 sec: (3)

Both values are in excellent agreement, which confirms our
model assumptions and interpretations.

To conclude, we have quantitatively determined key
parameters of thermally activated STZs in the model glass,
CuTi, viz., the size, activation energies, and plastic yield.
Cast in a thermodynamic model, this parameter triple can
quantitative correctly explain thermally activated viscous
flow and creep at moderate temperatures. It is straightfor-
ward to generalize these results to other STZ dominated
phenomena, such as aging or crystallization.
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