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The results of numerical study of physical characteristics (the pair and triplet correlation functions, the
isothermal compressibility, the heat capacities, and the diffusion constants) are presented for quasi-2D
dissipative Yukawa systems. The specific features of these characteristics (reflecting the two-stage melting
scenario) are investigated.
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The problems associated with the phase transitions in
systems of interacting particles are of significant interest in
various fields of science and technology. Two-dimensional
(2D) melting is of theoretical and practical interest and is
quality different from the liquid-to-solid phase transitions
in three-dimensional (3D) systems. According to the
Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
theory based on unbinding of topological defects (disloca-
tions and disclinations), the 2D system supports two or-
dered solid phases with the same packing symmetry [1–3].
In the first, both positional order and bond orientation have
long range. The second (so-called hexatic phase) has the
short-range positional order and the quasi-long-range bond
orientation. Thus the transitions from the solid to the liquid
occur with the formation of the intermediate hexatic phase.
Compelling evidences for KTHNY theory in the systems
with the different interparticle potentials have been pre-
sented in a set of experimental and numerical works, for
example, for electrons on the surface of helium [4], for
polymer colloids [5,6], and for magnetic bubbles in thin
films [7,8]. One of results of these works is the fact that a
point of liquid-to-hexatic phase transitions for systems
analyzed has been observed near the point of hexatic-to-
solid phase transitions. The difference between these
points is not more than 3%–5% [4–8].

The main problem involved in studies of phase transi-
tions in nonideal systems is associated with the absence of
an analytical theory of liquid that could explain its thermo-
dynamic properties, give the equations of state, describe
heat and mass transfer, and so on. In the case of isotropic
pair interparticle interactions � � ��l� the physical prop-
erties of simple (single atomic) liquids, such, as the pres-
sures, P, the energy densities U, are fully determined by
the pair correlation function g�l� [9–11]. If both equations
of state [thermal P�T; n; �; g�, and calorific U�T; n;�; g�
equations] are known, any thermodynamic characteristics
can be obtained from general thermodynamic relation-
ships. (Here l is the interparticle distance, and T, and n
are the particle temperature, and density, respectively).

Dusty plasma (consisting of electrons, ions, neutral gas,
and solid macroparticles of micron sizes) is a good experi-
mental model for studying of phase transitions in nonideal

systems, because, owing to their size, dust particles may be
video filmed, which significantly simplifies the use of
direct diagnostic methods [12–19]. Dusty plasma is ubiq-
uitous in nature (in space, in planetary atmospheres, etc.)
and often appears in a number of technological processes
(for example, in processing of semiconductors). It is cus-
tomary to assume that dust particles in a plasma interact
with one another through the screened Coulomb potential
(Yukawa type), � � �eZ�2 exp��l=��=l, where � is the
screening radius, e is the electron charge, and Z is the
dust charge. This type of potential is also often used for a
description of interparticle interaction in medical industry,
in physics of polymers, etc. [10,11]. Most experimental
investigations of dusty plasma are performed in the weakly
ionized plasma of gas discharges, where a dissipation of
dust energy due to dust-neutral collisions can effect con-
siderably the physical properties of systems. The nonemit-
ting dust particles immersed in gas discharge plasma ac-
quire negative electric charges (jZj � 103–105e) and can
form the 3D or quasi-2D strongly coupled dust structures
(similar to liquid or crystal). The quasi-2D dust structures,
which consist of from 1 to �10 dust layers, are typical for
the plasma of radio frequency (rf) discharge [13–19]. The
melting of dust structures in rf discharge arises often
through the collective excitation of the rotational domain
motion [17–19]; it is quite similar to the qualitative feature
of 2D melting described by the KTHNY theory.

Quantitative information on the phase state of 2D sys-
tems (including criteria for phase transitions) can be ob-
tained from analysis of the positional, or bond orientation
order using the different power, or exponential approxima-
tions for spatial reducing of peaks of pair correlations
function g�l� or bound orientational function g6�l� [5–
7,17,18]. So, for example, a power law [gs / �l=lp���

with �< 1=3] for the slop gs of g�l� was assumed in [7]
for a ‘‘perfect’’ (without defects) crystal, and an exponen-
tial approach gs / exp���l� for the hexatic phase (� �
�h � const), and for the liquid (�>�h). Nevertheless, an
arbitrary way for the choosing of parameters for approx-
imating functions makes these approaches hard to use as
criteria for both liquid-to-hexatic, and hexatic-to-solid
phase transitions [20]. A set of approaches for analysis of
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the phase state of 2D systems is based on a study of
dynamic behavior of particle correlation [for example, on
the time dependencies for the bond-angular order parame-
ter, G��t�, or for the Lindemann parameter] [8,19,21]. It
should be noted that a study of topological phase transi-
tions is often made difficult by the fact that various small
perturbations (for example, friction forces, spatial inhomo-
geneities, or a presence of finite boundaries) imparts some
quasi-2D properties to the analyzed systems that makes the
special qualitative and quantitative features of 2D phase
transitions hard to recognize. So, for example, difficulties
with the identification of the intermediate hexatic phase
were observed with the numerical analyses of G��t� func-
tion for pure dispersive (without friction) 2D Yukawa
systems [21]. The numerical study of strongly dissipative
(colloidal) 2D Yukawa systems shown also that the g6�l�
functions do not have power reducing with increasing of
interparticle distance (predicted by KTHNY theory) [22].
Additionally, the point of liquid-to-solid phase transition
(crystallization point) in these systems has been observed
for the essentially lower temperatures [22] than a point of
liquid-to-hexatic transition predicted in [21].

The additional possibilities for detailed experimental
investigations of two-stage melting in dissipative 2D-
Yukawa systems give the results presented in this Letter.
Here we present the results of numerical study of physical
properties (the pair and triplet correlation functions, the
isothermal compressibility, the heat capacities, and the
diffusion constants) for nonideal dissipative systems of
macroparticles forming a monolayer for conditions close
to that of dusty plasma experiments in rf discharges. The
calculations were performed by the Langevin molecular
dynamic method for particles in the field of gravity [bal-
anced by linear electric field E�z� � �z, where � is the
value of gradient of E] with periodic boundary conditions
in two other directions (x and y) forNp � 225 independent
macroparticles with the cut off of the pair potential equal to
8lp and � � lp=� � 1, 2, 4, 6 [here lp � �Np=S�1=2 is the
mean interparticle distance, and S is the square of the
simulated cell]. The simulation technique is detailed in
[20,23,24].

The calculations were performed for various values of
the effective dimensionless parameters introduced by anal-
ogy to 3D-Yukawa systems, namely, the effective coupling
parameter, �� � ��1� �� �2=2� exp����, and the scal-
ing factor, ��!�=�fr, where !� �eZ	2�1����2=2�

exp����=	m�l�3

p �
1=2 [23,24]. Here � � �eZ�2=�Tlp� is the

Coulomb coupling parameter, �fr is the friction coefficient,
m is the particle mass, and T is its temperature in energy
units. The effective coupling parameter �� was changed
from 1 to 150, and the scaling factor �was varied from 0.04
to 4, typical for conditions of complex plasma experiments.
The calculations show that the order in the system of
macroparticles is practically independent on the friction
(�fr) and on the value of the gradient of the electric field (�)
and it is determined by �� for weakly correlated systems

(�� � 10), as well as for stronger coupled structures up to
their crystallization point, where formation of hexagonal
type lattice occurs for all cases investigated. [Notice, that
in the 3D-Yukawa liquids with � < 6, the value of �� also
fully defines the form of the pair function g�l� up to the
crystallization point �� � ��c�3D� � 102 of system, where
the body centered cubic lattice is formed [23,24]]. The
functions g�l� are shown in Fig. 1 for different parameters
of simulated systems. Some little dependence of numerical
data on the � value has been observed close to the phase
transition region only. The first maximum gmax of pair
functions g�l� and the ratio of gmax to the first minimum
gmin of g�l � 0� versus �� are shown in Fig. 2. These
values were averaged for varied parameters (Z, �, �fr, �)
under study. The numerical errors of presented data (the
deviations of the gmax and gmax=gmin values for different Z,
�, �fr, �) are less than 3%. Notice, that our results are in
agreement with that for strongly dissipative (�! 0) 2D-
colloidal systems presented in Ref. [22]. One can easily
see, that the gmax, and gmax=gmin values have two singular
points. First (for �� � 65–72) is the inflection point; it may
be related to a critical point of liquid-to-hexatic phase
transition. This point is close to the point of phase tran-
sition observed in dispersive Yukawa systems for �� � 74
[21]. The second singular point (small jumps of the gmax,
and gmax=gmin values) is observed for �� � 102–110, and it
may be related to the crystallization point of analyzed 2D
systems in a solid with the hexagonal lattice (the hexatic-
to-solid phase transition).

As additional illustrations of two-stage melting, we
present the cross sections of the triplet correlation func-
tions g3 � g3�l12; l23; l31� [13] (lij � jli � ljj) for a fixed
value of l12 equal to the most probable interparticle spacing
lmax�l12 � lmax� for different �� [see Figs. 3(a) and 3(c)]. In
order to represent these functions in a form convenient for
comparison, they were normalized to the maximum of g3:
black corresponds to unity, and white corresponds to g3 �
0. The calculation reveals that the pronounced maxima of
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FIG. 1. Functions g�l=lp� for quasi 2D systems with different
�� for: (lines) � � 2, � � 3; () � � 4, � � 0:12; (�) � � 6,
� � 0:48. The gs functions with different �: (1)1.4; (2) 0.6.

PRL 97, 195001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 NOVEMBER 2006

195001-2



g3 in the system arise with the emergence of such maxima
for a pair function, g�l� [13]. As �� increases to �70, the
maxima of g3 increase and, at �� > 70, the emergence of
regular hexagonal clusters of particles is registered. With
following increasing of ��, the magnitude of the maxima
located at distances l � lmax grows, new maxima arise at
sites of the hexagonal lattice, and a formation of the
‘‘perfect’’ crystal occurs for �� > 102–110.

The obtained correlation functions g�l�, together with
given Yukawa potential ��l�, were used to analyze the
thermodynamic properties of the structures under study,
namely, to calculate P�T; n; �; g�, U�T; n; �; g�, and also
their derivatives such as the normalized isothermal com-
pressibility, 
T � T=�@P=@n�T , and the value of heat ca-
pacity CV � �@U=@T�V . The illustrations of calculated
values of CV and 
T are presented in Fig. 4 for different
parameters �. The calculations show that the CV values are
practically independent on the screening parameter (�) for
� � 1:5 with �� > 10. In doing so, the value of CV is close
to 2 for the high parameters � (with �� �), i.e., to the
theoretical value of the heat capacity for the 2D crystal of
charged points. In the case of 1:5 � � � 5 with �� > 10,
the normalized compressibility, 
T , outside of phase tran-
sition regions is in a good agreement with the function

T � 	�f�1:5� 0:09367�g � 1� 2	�=���1 proposed
for its approximation in [21]. It is easy to see the jumps
of the values of CV , and 
T in the regions with �� � 65–72
and �� � 102–110. The first of the two singular points may
be related to the liquid-to-hexatic phase transitions, the

second is the point of formation of the perfect hexagonal
crystal. Thus we can assume that the point of hexatic-to-
solid phase transitions is observed far from the liquid-to-
hexatic transitions. (The difference between these singular
points is �30%–40%). Note also that the decreasing of �
leads to the shift of the point of hexatic-to-solid transitions
to the region of higher �� [see Fig. 4].

Transport constants (diffusion, viscosity, etc.) are fun-
damental parameters that reflect the thermodynamic state
of systems. In diffusion measurements the ratio of mean
square displacement h�l2i to the observation time t is
usually calculated. The coefficient of thermal diffusion
D � limt!1D�t� of particles in the 2D system can be
obtained from D�t� � hh�l2iNit=4t, where �l �
jl�t� � l�0�j is the displacement of an isolated particle
from its initial position l�0� at the time t, and the angle
brackets hi denote the ensemble (N) and time (t) average
(the average is for all time intervals t). With t! 1, the
D�t� function tends to its constant value D, which corre-
sponds to the standard diffusion rate. Normalized diffusion
coefficientsD� � D��fr �!��mp=Tp (introduced by anal-
ogy with 3D systems [23]) vs. �� are shown in Fig. 5 for
various parameters � and �. Here we can also see two
singular points: the point of inflection of D����� for �� �
70 (the liquid-to-hexatic transitions); and the point of
abrupt change of D����� with �� � 102–110, where the
diffusion coefficients D! 0, and the analyzed systems
transform into a solid with the hexagonal lattice.
Comparison of calculations of D� in strongly dissipative
(�! 0) 2D-colloidal systems [22] with our data is shown
in Fig. 5. Thus we can conclude that theD� function for the
2D Yukawa systems is fully determined by the coupling
parameter �� for weakly correlated as well as for strongly
coupled systems. But we have some difference between
solutions of motion equations for the case of weakly dis-
sipative (� > 0:3) and weakly dispersive (� < 0:25) sys-
tems with �� > 70.

We have to note that the abrupt changes of diffusion
coefficients (D! 0 for �� � 102–110) is the well-known
criterion for the crystallization point of systems [22,23]. To
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FIG. 3. The cross sections g3 for ��: (a) 35, (b) 76, (c) 105.
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FIG. 4. Function of CV (1) and �
T (2) vs �� for � � 2 and
different �: (fine lines) �0:23; (deep lines) �1:86.
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FIG. 2. Maximum gmax (1) and the ratio gmax=gmin (2) vs ��

for quasi 2D- dissipative systems; (*) the gmax values for 2D-
colloidal systems [22]; (3) the values of 10�.
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verify the detected point of liquid-to-hexatic transitions
(�� � 65–72), we have considered the often used criterion
that establishes the exponential reducing [gs / exp���l�
with � � �h � const] for the peaks of the pair functions,
g�l�, in the hexatic phase (for the liquid �>�h; see
above). An illustration of reducing pair correlation in
simulated systems together with the approximation of the
g�l� slope (obtained by the best fitting) by functions gs �
1� �gmax � 1� expf���l� lmax�=lpg is presented in
Fig. 1; here lmax is the gmax position. Coefficients � of
exponential approximations are shown in Fig. 2. We can
see that the � � �h � 0:6 is constant for �� from �70 to
�100, and the value of � increases visibly with �� > 70.

Under conditions of our calculations we have simulated
a single monolayer of macroparticles. The formation of
dust monolayers identical to simulated ones is often occurs
in real experiments with dusty plasma in rf discharge [17–
19]. In this case a presence of other forces (like the
thermoforetic, or ion drag ones) in a sheath area of rf
discharge is practically not influenced on structural prop-
erties of dust system; these forces may lead to a displace-
ment of dust monolayer in vertical direction. The time
fluctuations of dust charges in real experiments may lead
to an increasing of their temperature (that can be registered
by measurements) [25,26], but in the case of a uniform dust
monolayer this process will not change the critical values
of the effective coupling parameter in the points of phase
transitions.

To conclude, here we have studied the physical proper-
ties of quasi 2D-dissipative Yukawa structures. We have
introduced generalized dimensionless parameters respon-
sible for the particle correlations, ��, in these systems. The
numerical simulations presented here shown that the physi-
cal properties of systems under study have two singular
points. The first (for �� � 65–72) is related to the liquid-to-

hexatic phase transitions, the second (�� � 102–110) is the
point of hexatic-to-solid phase transitions. The presented
results can be useful for detailed experimental investiga-
tions of two-stage melting in dissipative 2D-Yukawa
systems.
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