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2Department of Physics, University of Arizona, 1118 East Fourth Street, Tucson, Arizona 85721, USA

(Received 20 October 2005; published 9 November 2006)

We show how a classically vanishing interaction generates entanglement between two initially non-
entangled particles, without affecting their classical dynamics. For chaotic dynamics, the rate of
entanglement is shown to saturate at the Lyapunov exponent of the classical dynamics as the interaction
strength increases. In the saturation regime, the one-particle Wigner function follows classical dynamics
better and better as one goes deeper and deeper in the semiclassical limit. This demonstrates that quantum-
classical correspondence at the microscopic level does not require coupling to a large number of external
degrees of freedom.
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In the decades since its inception, no observed phenome-
non nor experimental result ever contradicted quantum
theory. Yet, the world surrounding us, though being made
out of quantum-mechanical building blocks, behaves clas-
sically most of the time. This suggests that, one way or
another, classical physics emerges out of quantum mechan-
ics. Today’s common understanding of this quantum-
classical correspondence is based on the realization that
no finite-sized system is ever fully isolated. It is then hoped
that a large regime of parameters exists where the coupling
of the system to external degrees of freedom (to be called
the environment from now on) destroys quantum interfer-
ences without modifying the system’s classical dynamics.
Indeed, such a coupling usually induces loss of coherence
on a time scale much shorter than it relaxes the system
[1,2].

The standard approach to decoherence starts from a
master equation valid in the regime of weak system-
environment coupling [1,2]. The master equation deter-
mines the time evolution of the system’s Wigner function
W�p;q� � �2�@��d

R
dx exp�ip � x���q� x=2;q� x=2�

(� is the system’s density matrix) as

 @tW � fH;Wg �
X

n	1

�i@�2n

22n�2n� 1�!
@2n�1
q V@2n�1

p W

� 2�@p�pW� �D@
2
pW: (1)

The first term on the right-hand side of Eq. (1) is the
classical Poisson bracket. The second term, written here
for the case of a momentum-independent potential V�q�,
exists already in closed systems and generates quantum
corrections to the dynamical evolution of W. This term
starts to become comparable to the Poisson bracket at the
Ehrenfest time �E � ��1 lnN, where � is the Lyapunov
exponent of the classical dynamics and N the size of the
system’s Hilbert space. The two terms on the second line of
Eq. (1) are induced by the coupling to the environment. In
the limit of weak coupling �! 0 but finite diffusion
constant D / �T � const, the friction term vanishes, leav-

ing the classical dynamics unaffected. Simultaneously, for
large enough D, the momentum diffusion term induces
enough noise so as to eliminate the quantum corrections
before they become important. The time evolution of W is
then solely governed by the classical Poisson bracket; that
is to say, classical dynamics emerges out of quantum
mechanics. References [3,4] provided for a numerical
illustration of this scenario.

It is unclear how generic this scenario is. It is based on
a master equation derived under specific assumptions on
the environment, the dimensionality of the system or the
strength of the coupling between system and environ-
ment [1,2], and it also formally requires one to consider
infinite temperatures. Moreover, and with the specific ex-
ception of the kicked harmonic oscillator [4], there is not
much analytical understanding of the decoherence pro-
cess in generic dynamical systems; i.e., except for the
regular case, master equations are usually integrated nu-
merically. Simultaneously, claims have been made of an
environment-induced entropy production governed by the
system’s Lyapunov exponent � [2,5], without clear ana-
lytical derivation nor strong numerical evidence [6]. A
Lyapunov decay of the fidelity has recently been analyti-
cally predicted [7] and numerically observed [8]; however,
decoherence and fidelity are, in general, two different
things [9,10].

We revisit these issues and consider two interacting
quantized dynamical systems. Entanglement generation
between two particles has already been considered in
Refs. [10–14]. All results to date are consistent with the
scenario proposed in Ref. [10], according to which bipar-
tite entanglement results from two contributions: (i) a
quantum-mechanical one, which depends on the coupling
strength between the two systems, and (ii) a dynamical
one, which, in chaotic systems, is determined by the total
system’s spectrum of Lyapunov exponents. The entangle-
ment generation rate is given by the weakest of the cou-
pling strength and the Lyapunov exponent. It has to be
pointed out that this picture holds in the regime of classi-
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cally weak but quantum-mechanically strong coupling
(this will be made quantitative below). For regular systems,
entanglement generation is slower than for chaotic ones,
typically power-law in time [10,14].

The purpose of this Letter is threefold. First, we address
the problem of decoherence and bipartite entanglement
from a microscopic point of view, i.e., without relying on
effective differential equations. This allows for a clear
identification of the regime of validity of our theory.
Second, we give strong numerical evidence for the exis-
tence of a Lyapunov regime of entanglement (the numeri-
cal evidence presented in Ref. [12] was challenged in
Ref. [13]). Third, we discuss our results from the point of
view of the quantum-classical correspondence and present
numerical phase-space dynamics results showing that this
correspondence is fully achieved in the regime of
Lyapunov entanglement. This is, we believe, the first clear
microscopic illustration of the quantum-classical corre-
spondence in a generic chaotic system.

As our starting point, we consider the Hamiltonian

 H � H1 
 I2 � I1 
H2 � @U: (2)

We take chaotic one-particle Hamiltonians H1;2. We spec-
ify that the interaction potential U is smooth, varying over
a distance much larger than the particles’ de Broglie wave-
length �, and that it depends only on the distance between
the particles. Planck’s constant in front of U in Eq. (2)
makes it explicit that we consider a semiclassically vanish-
ing two-particle interaction; i.e., the classical Hamiltonian
corresponding to Eq. (2) does not couple the two particles.
Our goal is to calculate the purity P �t� � Tr1��

2
1�t�� of the

reduced density matrix �1�t� � Tr2��t�. In the situation we
consider of a unitary two-particle dynamics acting on an
initially pure two-particle state, P �t� is a good measure of
entanglement, which varies between 1 for product states
and 0 for maximally entangled states. The calculation
proceeds along the lines of Ref. [10], and here we only
sketch it. A similar semiclassical approach has been ap-
plied to a stochastic Schrödinger equation in Ref. [15].

In the initial two-particle product state we take, each
particle is in a Gaussian wave packet  1;2�y� �
���2��d=4 exp�ip1;2 � �y� r1;2�=@�jy� r1;2j

2=2�2�. The
two-particle density matrix evolves according to ��t� �
exp��iH t=@�j 1; 2ih 1; 2j exp�iH t=@�. This time
evolution is evaluated semiclassically by means of the
semiclassical two-particle propagator

 hx1;x2je�iH t=@jy1; y2i �
X

s;s0
C1=2
s;s0 e

i��Ss�Ss0 �=@�Ss;s0 �; (3)

which is expressed as a sum over pairs of classical trajec-
tories, labeled s and s0, respectively, connecting y1 to x1

and y2 to x2 in the time t. Because of our assumption of a
semiclassically vanishing coupling, these classical trajec-
tories are determined by the one-particle Hamiltonians.
Each pair of trajectories gives a contribution weighted by
Cs;s0 , the inverse of the determinant of the stability matrix

on s and s0, and oscillating with one-particle (denoted by Ss
and Ss0) and two-particle (denoted by Ss;s0 �R
t
0 dt

0U�q�1�s �t0�;q
�2�
s0 �t

0��) action integrals accumulated by
the first and second particles along s and s0, respectively. In
the regime we consider, the one-particle actions generate
much faster oscillations than their two-particle counter-
parts. Accordingly, our approach relies on stationary phase
conditions imposed on the one-particle actions. In Eq. (3),
Maslov indices have been omitted since they drop out of
the calculation.

To leading order in @eff � 2�=N1;2 (Ni is the size of the
ith system’s Hilbert space), our semiclassical calculation
gives the time evolution of the purity as
 

P �t� ’
X

i�1;2

�i��t > �i� exp���it� � exp��2�t�

���t > ��1�E �N
�1
1 ���t > ��2�E �N

�1
2 : (4)

The first, classical term decays with the Lyapunov
exponents �1;2 [16]. It does not exist at short times,
t < �i � ��1

i ln��i=�2Gi� (Gi �
R
dt0h@�i�q U�q

�1�
s �0�;

q�2�s0 �0��@
�i�
q U�q

�1�
s �t0�;q

�2�
s0 �t

0��i), and has prefactors �i �
O�1�. The second term is the standard, interaction-
dependent quantum term with � �

R
t
0 dt

0hU�q�1�s �0�;
q�2�s0 �0��U�q

�1�
s �t0�;q

�2�
s0 �t

0��i, assuming a fast decay of cor-
relations. Being given by a classical correlator evaluated
along classical trajectories, � does not depend on @.
Finally, the saturation terms in Eq. (4) set in after ��i�E �
��1
i lnNi.
The validity of our approach is given by �2 � � � B2,

where B2 and �2 � B2=�N1N2� are the two-particle band-
width and level spacing, respectively [8]. In this range, U
is quantum-mechanically strong as individual levels are
broadened beyond their average spacing, but classically
weak, as B2 is unaffected by U [7,8]. We note that our
semiclassical approach preserves the properties of the
density matrix Tr1��1�t�� � 1, �1 � �y1 as well as the
symmetry Tr1��2

1�t�� � Tr2��2
2�t��.

Equation (4) expresses the decay of P �t� as a sum over
dynamical, purely classical contributions and quantal ones,
depending on the interaction strength. Because the decay-
ing terms are exponential and have prefactors of order
unity, one has for t > ��1;2�E ; �1;2

 P �t� ’ exp��min��1; �2; 2��t� � N�1
1 � N�1

2 : (5)

Equation (5) reconciles the results of Refs. [12,13]. Its
regime of validity �2 � B2=�N1N2� � � � B2 is paramet-
rically large in the semiclassical limit N1;2 ! 1. The same
approach also applies to regular systems, in which case the
exponentially decaying Lyapunov terms are replaced by
power-law decaying terms [10,14].

We now discuss the connection of our main result,
Eq. (5), to Eq. (1). The purity measures the weight of
off-diagonal elements of �1�t� and, hence, of the impor-
tance of coherent effects. In the regime 2�� �1 � �2,
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P �t� reaches its minimal value at the Ehrenfest time. Thus,
quantum effects [the second term on the right-hand side of
Eq. (1)] are eliminated before they have a chance to appear.
In that regime, one therefore expects the quantum-classical
correspondence to become complete in the semiclassical
limit N1;2 ! 1. We now present numerical evidence sup-
porting this reasoning.

To numerically check our results, we consider the
Hamiltonian (2) for two coupled kicked rotators [17]

 

Hi � p2
i =2� Ki cos�xi�

X

n

��t� nT�; (6a)

U � 	 sin�x1 � x2 � 0:33�
X

n

��t� nT�: (6b)

The interaction potential U is long-ranged with a strength
	 and acts at the same time as the kicks. Upon increasing
Ki, the classical dynamics of the ith particle varies from
fully integrable (Ki � 0) to fully chaotic [Ki * 7, with
Lyapunov exponent �i 
 ln�Ki=2�]. For 1<Ki < 7, the
dynamics is mixed. We will vary K1;2 2 �3; 12� to get a
maximal variation of �i, while making sure that both  1

and  2 lie in the chaotic sea. We follow the usual quanti-
zation procedure on the torus x; p 2 ���;��. The band-
width and level spacing are given by B2 � 4�,
�2 � 4�=N2, and we numerically extracted � ’ 0:43	2

from exact diagonalization calculations of the local spec-
tral density of states. The time evolved density matrix is
computed by means of fast Fourier transforms [17]. The
algorithm requires only O�N lnN� operations, which al-
lowed us to reach system sizes up to N1;2 � 2048, more
than 1 order of magnitude larger than any previously
investigated case.

The behavior of P �t� is shown in Fig. 1. First, it is seen
that, as 	 increases, the rate of entanglement generation
also increases, up to some value 	c, after which it saturates.
We have found that (i) prior to saturation, P �t� decays
exponentially with a rate 
 0:85	2, provided � �
0:43	2 > �2 � 4�=N2 is satisfied, and that (ii) 	c behaves
consistently with Eq. (5). Second, Fig. 1 shows how P �t�
behaves for fixed 	 > 	c upon variation of the Lyapunov
exponents �1 � �2. The rescaling of the time axis t! �1t
allows one to bring together six curves with �1 2
�0:5; 1:35�, varying by almost a factor of 3. Third, Fig. 1
shows that in the chaotic regime considered here with
N1 � N2, P �t! 1� � 2N�1

1 . These numerical data fully
confirm our main results, Eqs. (4) and (5).

We next turn our attention to the quantum-classical
correspondence in phase space. We compare in Fig. 2
the Liouville evolution of a classical distribution with
that of the Wigner function W1�p;q; t� �
�2�@��d

R
dx exp�ip � x��1�q� x=2;q� x=2; t�. The lat-

ter is quantum-mechanically evolved from a localized
wave packet with the same initial location and extension
as the classical distribution. Three quantum phase-space
plots are shown: (i) (top right) for a free system, 	 � 0; (ii)
and (iii) (bottom left and right) for a coupled system 	 � 4,

in the regime P �t� ’ exp���1t�. The bottom left panel has
a system size N1 � N2 � 512, while the bottom right
panel has N1 � N2 � 2048. All plots show phase-space
distributions after 5 kicks, a duration comparable to �E.
Two things are clear from these figures. First, a coupling is
necessary and sufficient to achieve phase-space quantum-
classical correspondence. Second, the correspondence be-
comes better as we move deeper in the semiclassical
regime, even though the interaction Hamiltonian vanishes
in that limit.

One key issue is whether the observed classical entan-
glement rate translates into a Lyapunov decoherence rate
for systems coupled to a true environment. The latter
differs from a coupling to a single particle in that it has
much shorter time scales, it has a much bigger Hilbert
space, and it cannot be initially prepared in a pure
Gaussian wave packet. We can take these conditions into
account in our semiclassical approach by considering
(i) �2 � �1, (ii) N2 ! 1, and (iii) taking an initial mixed
environment density matrix �env �

P
aj
aj

2jaihaj, with
hxjai being nonoverlapping Gaussian wave packets. The
result is that Eq. (4) is replaced by
 

P �t� ’ �1��t > �1� exp���1t�

� exp��2�t� ���t > ��1�E �N
�1
1 : (7)

The dynamical Lyapunov decay of the purity seems to
survive in the case of a particle coupled to an environment.
We have obtained numerical confirmation of Eq. (7) which
we do not present here. Care should be taken in interpreting
this result, however, as our approach explicitly excludes
dissipation effects [18] and neglects possible nonuniversal,
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FIG. 1. Main plot: Purity of the reduced density matrix for
N1 � N2 � 512, K1 � K2 2 �4; 12�, and 	 � 4 giving 2� �
13:6� �1 � �2. Data have been calculated from 20 different
initial states. The time axis has been shifted by the onset time �1

(see text) and rescaled with �1 2 �0:5; 1:35�. The solid line
indicates / exp���1t�, and the dashed line gives the asymptotic
saturation P �1� � 2N�1

1 . Inset: Purity for K1 � K2 � 5:09 for
	 � 0:2 (circles), 0.4 (squares), 0.8 (diamonds), 1.6, 2, 3, and 4
(triangles).
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low-temperature contributions to the coupling correlator
[19].

We stress in conclusion that one advantage of our ap-
proach is that P �t� is directly calculated, without the step
of numerically integrating a differential equation for �1�t�.
Future works should focus on decoherence by an environ-
ment made of many coupled dynamical systems.
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FIG. 2 (color online). Phase-space plots for a classical distribution (top left), uncoupled (top right) and coupled (bottom left and
right, 	 � 4) quantum Wigner distributions, after five iterations of the kicked rotator map of Eqs. (2) and (6). In all cases, the system
has K1 � 3:09, and the initial distributions are Gaussian centered in the chaotic sea at �x; p� � �1; 2�. Bottom panels: Wigner functions
for the quantum system coupled to a second kicked rotator with K2 � 100. One has 2� � 13:6> �2 � �1, so that the purity behaves
as P �t� ’ exp���1t�. The left panel has N1 � N2 � 512, and the right panel has N1 � N2 � 2048. The presence of ghost images in
the Wigner function is an artifact of the boundary conditions [20].
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