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Fermi acceleration in a Fermi-Ulam model, consisting of an ensemble of particles bouncing between
two, infinitely heavy, stochastically oscillating hard walls, is investigated. It is shown that the widely used
approximation, neglecting the displacement of the walls (static wall approximation), leads to a systematic
underestimation of particle acceleration. An improved approximative map is introduced, which takes into
account the effect of the wall displacement, and in addition allows the analytical estimation of the long
term behavior of the particle mean velocity as well as the corresponding probability distribution, in
complete agreement with the numerical results of the exact dynamics. This effect accounting for the
increased particle acceleration—Fermi hyperacceleration—is also present in higher-dimensional sys-
tems, such as the driven Lorentz gas.
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In 1949, Fermi [1] proposed an acceleration mechanism
of cosmic ray particles interacting with a time-dependent
magnetic field (for a review, see [2]). Ever since, this has
been a subject of intense study in a broad range of systems
in various areas of physics, including astrophysics [3–5],
plasma physics [6,7], atom optics [8,9], and has even been
used for the interpretation of experimental results in atomic
physics [10]. Furthermore, when the mechanism is linked
to higher-dimensional time-dependent billiards, such as a
time-dependent variant of the classic Lorentz Gas, it has
profound implications on statistical and solid state physics
[11]. Several modifications of the original model have been
suggested, one of which is the well-known Fermi-Ulam
model (FUM) [12–14] which describes the bouncing of a
ball between an oscillating and a fixed wall. The FUM and
its variants have been the subject of extensive theoretical
(see Ref. [13], and references therein) and experimental
[15–17] studies as they are simple to conceive but hard to
understand in that their behavior is quite complicated. A
standard simplification [13] widely used in the literature,
the static wall approximation (SWA), ignores the displace-
ment of the moving wall but retains the time dependence in
the momentum exchange between particle and wall at the
instant of collision as if the wall were oscillating. The SWA
speeds up time-consuming numerical simulations and al-
lows semianalytical treatments as well as a deeper under-
standing of the system [13,18–21]. However, as shown by
Einstein in his treatment of the Brownian random walk
[22], taking account of the full phase space trajectory
(instead of the momentum component only) is essential
for the correct description of diffusion processes. More
recently, in the context of diffusion in the deterministic
FUM, Lichtenberg et al. have shown that one has to
employ both canonical conjugate variables (position and
momentum) in order to obtain the correct momentum
distribution in the asymptotic steady state [20]. The present

work shows that even in the absence of an asymptotic
steady state the diffusion in velocity space is deeply af-
fected by the location of the collision events in configura-
tion space.

The dynamical system in question consists of two har-
monically driven infinitely heavy walls with an ensemble
of particles bouncing between them. When a particle col-
lides with a certain wall, a random shift of the phase of the
other wall, which is uniformly distributed in �0; 2��, oc-
curs. The stochastic component in the oscillation law of the
wall simulates the influence of a thermal environment on
wall motion and leads to Fermi acceleration [13,18–
20,23,24]. It should be noted that although stochasticity
can be introduced otherwise—for instance, via a random
component in the angular frequency of oscillation—the
random phase approach has become quite common as a
method of randomization of the FUM and its modifications
[11,13,19], partially because it is the only conceivable way
to randomize the system without changing the energy of
the moving wall.

Despite the external randomization [13] the SWA does
not provide an accurate description of the diffusion pro-
cess; more specifically, the energy gain of the particle is
substantially underestimated. For this reason we introduce
in this Letter the so-called hopping wall approximation
(HWA), which takes into account the effect of the wall
displacement. By means of this approximation it is made
clear how the oscillation of the wall in configuration space
affects the acceleration law of an ensemble of particles.
Furthermore, the corresponding map allows analytical
treatment and is as computationally efficient as the SWA
and it enables us to calculate the evolution of the velocity
distribution of the particles for long time periods.

The specific setup of the studied system is determined by
the oscillation frequencies !i and amplitudes Ai of the two
walls (i � L;R) as well as the distance w between the
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walls at equilibrium. However, the dynamics does not
depend on each of these parameters explicitly. It is there-
fore appropriate to introduce the relevant dimensionless
quantities �i �

Ai
w , r � !L

!R
. Obviously, when the ratio � �

�L
�R

meets the condition �� 1 (or �� 1) the original FUM
is recovered. For the sake of simplicity the case � � 1
(AL � AR � A) and r � 1 (!L � !R � !) is exclusively
considered in the following. Using as a length unit the
spacing between the walls w and as a time unit 1

! the
dynamical laws of the system can be derived in a dimen-
sionless form:

 Vn � �Vn�1 � 2un; un � � cos��tn � tn�1 � �n�;

(1)

where Vn denotes particle velocity after the nth collision,
un wall velocity on collision, and �n the random phase
component. The time of free flight �tn is obtained by
solving the implicit equation

 Xn�1 � Vn�1�tn � 	
1
2� � sin��tn � tn�1 � �n�: (2)

Obviously, Eq. (2) links the time of the nth collision to the
position Xn�1 of the particle in the previous collision. The
SWA simplifies the process on the basis of the assumption
that the time of free flight, �tn, depends only on particle
velocity, i.e., �tn �

	1
Vn�1

. If this approximation is applied to
the system of two oscillating walls, then it is possible to
extract analytically the ensemble averaged velocity square
h�V2

ni � hV2
n � V2

n�1i of the particle after integration over
the random phase �n: h�V2

ni � 2�2. Given that hV2
ni �Pn

i�1h�V
2
i i � hV

2
0 i, the root mean square particle velocity

is

 Vrms;SWA�n� �
��������������������������
2�2n� hV2

0 i
q

: (3)

Additionally, this quantity can be determined numeri-
cally using the exact dynamical law given in Eqs. (1) and
(2). The calculations are performed on the basis of an
ensemble of 104 trajectories with hV0i �

102

15 , � � 1
15 .

Corresponding results are presented in Fig. 1 together
with the analytical result (3) and show that there is a
considerable difference between the acceleration rate of
the root mean square (rms) velocity given by the exact map
and by the SWA. For a better understanding of how this
difference originates, we improve the SWA by taking into
account the impact of the displacement of the walls incor-
porated in the exact dynamics. As particle velocity in-
creases, the time of free flight decreases, making it
possible to approximate the position of the scatterer at
the instant of the nth collision with that at the �n� 1�th
collision. This approximation allows for an analytical
evaluation of �tn and defines the hopping wall approxima-
tion, i.e., HWA. In this framework the time interval �tn
reads as follows:

 �tn � �t
n 	
1

Vn�1
; (4)

where �t
n �
��sin�tn�1��n��sin�tn�2��n�1��

Vn�1
is the correction

term to the time of free flight predicted by SWA.
In order to derive h�V2

ni using Eqs. (1) and (4) the
following integrals have to be calculated:

 Ij �
Z 2�

0

Z 2�

0

1

4�2 �� cos�tn�1 � �tn � �n��
jd�nd�n�1;

(5)

where j � 1, 2. An exact analytical calculation of these
integrals is not possible. However, for the set of parameters
considered here, �t
n is much smaller compared to the other
phase components. Therefore, we expand the right-hand
side of Eq. (5) to the leading order of �t
n and then integrate
over �n and �n�1, which yields

 I1 � �
�2 cos� 1

hVn�1i
�

2hVn�1i
; I2 �

�2

2
:

Therefore, we find

 h�V2
ni � 2�2 cos

�
1

�hVn�1i

�
� 2�2: (6)

In the limit of high particle velocities hVn�1i � 1, Eq. (6)
is simplified to h�V2

ni  4�2, which is exactly 2 times the
result obtained by neglecting wall displacement.
Consequently, the root mean square velocity as a function
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FIG. 1. Numerical results for Vrms of an ensemble of 104

particles evolving in a FUM with two oscillating walls as a
function of the number of collisions. Results were obtained by
iterating the exact (circles) as well as the corresponding static
(diagonal crosses) and hopping wall (upright crosses) approx-
imative maps. It is noted that Vrms is measured in units of !w.
Analytical results according to the SWA averaged over the
random phase (solid line) as well as the analytical prediction
according to Eq. (7) (dash-dotted line) are also shown.
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of the number of collisions is

 Vrms;HWA�n� �
��������������������������
4�2n� hV2

0 i
q

: (7)

The analytical result (7) based on the HWA is equally
shown in Fig. 1. The above map can also be used to
numerically simulate the acceleration process of the parti-
cle, the corresponding results being presented in Fig. 1. In
contrast to the static wall approximation which underesti-
mates the acceleration of the particles, the HWA provides
an accurate description of this process, indicating that the
increased particle acceleration is due to the dynamically
induced correlation between the position and velocity of
the oscillating wall on collision. This hyperacceleration
can be quantified by the ratio Rh�n� �

h�V2
niexact

h�V2
niSWA

� 2. How-

ever, it should be noted that the specific value of Rh
depends on the characteristics of the oscillation law and
more specifically on its turning points. For example, one
can prove that for a piecewise linear oscillation law Rh is,
in general, for any finite n different than 2 and only in the
asymptotic limit does it become Rh�1� � 2 [25].

The above analysis reveals the role of the fluctuations in
the time of flight �tn between successive collisions caused
by the displacement of the scatterer. Despite the existence
of an external stochastic component in the phase of the
oscillating wall, these fluctuations lead to a systematic
increase of the acceleration of the particles. A simple
explanation of the physical mechanism leading to the in-
creased acceleration becomes possible by considering the
various configurations of the collision processes between
the wall and the particles. Let us assume for a given
velocity of the incident particle that the wall is moving in
the same direction as the particle after passing the equilib-
rium position. The collision time due to wall displacement
increases then, compared to the one assuming a wall fixed
in space. In this case, the velocity of the harmonically
oscillating wall is a decreasing function of time, and there-
fore an increase of the collision time leads to a decrease of
the wall velocity on the actual instant of the collision when
compared to the static wall approximation. This in turn
leads to a lesser energy loss in the course of the collision.
This reasoning holds equally in all other types of collision
events, leading to the general picture of less energy loss or
more energy gain when the wall displacement is taken into
account.

The focus of our attention now shifts to the probability
distribution function (PDF) of the magnitude of the particle
velocity and number of collisions n, ��jVj; n�. It has been
shown that the change of hV2i as a function of the number
of collisions n can be accurately described by a random
walk in momentum space hV2i / n, provided that the spa-
tial motion of the walls is taken into account. Numerical as
well as analytical treatments in setups similar to the present
one suggest that ��jVj; n� is described by a spreading
Gaussian [26,27]. However, simulations with the exact

map of Eq. (1) yield the histograms in Figs. 2(a) and 2(b)
��jVj; n� which show the PDFs corresponding to snapshots
for n � 5� 104, 5� 105 collisions. It is shown that, even
if the initial PDF is a Gaussian, with increasing time, it is
transformed to a one-dimensional Maxwell-Boltzmann–
like distribution since the set of initial conditions leading
to jVj � 1 is vanishingly small for sufficiently long times.
Using the hopping wall map the following analytical ex-
pression for the PDF is obtained, which describes the
magnitude of the particle velocity for n� 1:

 ��jVj; n� �
1

�2 jVje
�V2=�2�2�; (8)

where � �
����������������������������������
�4�2n� hV2

0 i�=2
q

. In Figs. 2(a) and 2(b) it is
clearly seen that this analytical result predicted by the
HWA accurately reproduces the exact behavior of the
system. Furthermore, Fig. 2(c) shows the evolution of the
mean value hjVji as a function of the number of collisions n
obtained numerically using the exact dynamics (open
circles). For the sake of comparison we also show the
corresponding analytical result: hjVji �

����
2

p
� based on

Eq. (8) (solid line).
The development of hyperacceleration takes place in

higher-dimensional scattering systems as well, such as a
time-dependent Lorentz gas consisting of harmonically
oscillating circular hard scatterers on a triangular lattice.
It is emphasized that in the time-dependent Lorentz gas
system Fermi acceleration exists without any externally
imposed randomization [11,19]. However, the absence or
presence of a random component in the dynamics influen-

0 50 100
0

0.01

0.02

0.03

|V |

ρ (
|V

|,
n)

(a)
 Numerical results
Analytical results

0 100 200 300
0

0.002

0.004

0.006

0.008

0.01

|V |

ρ (
|V

|,
n)

(b) Numerical results
Analytical results

10
0

10
2

10
4

10
6

0

10

20

30

40

50

60

70

80

90

Number of collisions,n

〈|V
|〉

(c)

FIG. 2. Numerically computed PDF for the magnitude of
particle velocity using an ensemble of 104 trajectories and
following the exact dynamics of Eq. (1) for (a) n � 5� 104

and (b) n � 5� 105. In each case the analytical result given by
Eq. (8) using the HWA is also shown (solid line). Finally,
(c) shows the numerically obtained evolution of hjVji as a
function of n using the exact dynamics (open circles) as well
as the analytical approximation based on Eq. (8) (solid line).
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ces the acceleration law. For example, if the oscillation axis
is fixed and uniform throughout the lattice the acceleration
law is Vrms / n1=4. On the other hand, if the oscillation axis
of the disks is randomly chosen on each collision, simu-
lating the effect of thermal noise, the acceleration law
becomes Vrms / n1=2, as in the 1D FUM system [25]. In
both cases, the static approximation underestimates the
ensemble mean energy growth, while the hopping approxi-
mation provides results much closer to those of the exact
model. To illustrate this, in Fig. 3 numerical results for the
random setup outlined above are presented. These are
obtained utilizing the exact map [28] as well as the corre-
sponding hopping and static approximative maps [29].
Consequently, it can be inferred that the development of
hyperacceleration is common to many driven dynamical
systems and features in any billiard which allows Fermi
acceleration to develop. Moreover, the understanding
gained in the present investigation helps open up the
prospect of designing time laws for the driving that provide
a specified acceleration behavior for the ensemble of par-
ticles thus leading to a desired nonequilibrium, i.e., time-
evolving velocity distribution.
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FIG. 3. Numerical results for Vrms of an ensemble of 104

particles evolving in a triangular harmonically driven Lorentz
gas with randomly chosen direction of oscillation on each
collision, as a function of the number of collisions. Results
were derived by iterating the exact maps (circles) as well as
the corresponding static (diagonal crosses) and hopping (upright
crosses) approximations. The parameters jAj � 0:01, ! � 1,
w � 2:15, and V0 �

1
2:15 have been used in the numerical simu-

lations, with A denoting the magnitude of the amplitude of
oscillation, ! the angular frequency, w the spacing between
the disk centers at equilibrium, and V0 the initial particle
velocity. Velocities are measured in units !w.
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