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Coherent control techniques are computationally applied to cold (1 mK< T < 1 K) and ultracold (T <
1 �K) Ne��3s; 3P2� � Ar�1S0� collisions. We show that by using various initial superpositions of the
Ne��3s; 3P2� M � f�2;�1; 0; 1; 2g Zeeman sublevels it is possible to reduce the Penning ionization and
associative ionization cross sections by as much as 4 orders of magnitude. It is also possible to drastically
change the ratio of these two processes. The results are based on combining, within the ‘‘rotating atom
approximation’’, empirical and ab initio ionization widths.
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Cold and ultracold atomic processes present a new
laboratory environment in which to explore and utilize
the quantum nature of matter. In this Letter we show that
the significance of quantum effects in such systems permit
unprecedented control over collisional processes. In par-
ticular, we consider the theory and computational imple-
mentation of the coherent control [1–4] of absolute and
relative cross sections in the collision of metastable atoms
A� and ground state target atoms B. Such collisions can
result in two main channels: (1) the ionization of the target
atom and the deexcitation of the metastable species, i.e.,
Penning ionization (PI) [5], or (2) associative ionization
(AI), wherein the colliding partners form an ionic dimer
while emitting an energetic electron. Schematically,

 �AI�AB� � e�  A� � B! A� B� � e�; �PI�: (1)

As an example, we consider the coherent control of PI and
AI resulting from collisions between Ne��3s; 3P2� and
Ar�1S0� in the cold and ultracold regimes. Amongst other
observations, the suppression of these processes in favor of
elastic scattering may well prove useful for the production
of Bose-Einstein condensates of excited states atoms.

A wealth of experimental information and theoretical
calculations on the uncontrolled Ne� � Ar collisions is
available and the possibility of control of this system at
thermal energies [6] now exists. As we report below, the
control achievable in the sub mK regime is far more
impressive.

The initial superposition state.—Coherent control is
achieved by preparing the colliding pair in an initial su-
perposition of internal states, such as,

 j i � eiK�Rc:m:�ik�rj�Ari
X
M

aMj�
M
Ne� i; (2)

where j Ari is the initial state of the Ar atom and j�M
Ne� i,

are Ne� Zeeman sublevels, with M � f�2;�1; 0; 1; 2g
being the projection of the Ne� electronic angular momen-
tum on the space-fixed quantization axis. aM are prepara-

tion coefficients, to be optimized to yield a desired ob-
jective, Rc:m: is the c.m. coordinate, Rc:m: � �mNerNe �
mArrAr�=�mNe �mAr�, and r is the internuclear separation
vector, r� rNe�rAr. The (body-fixed) momenta are given
as, K�kNe�kAr, k��mArkNe�mNekAr�=�mNe�mAr�.
Here rAr and kAr (rNe and kNe) denote the position and
momentum of the Ar (Ne�) atom in the laboratory frame.
Note that the fact that the initial superposition state is
comprised of degenerate M states, and that the collision
partners are atoms, ensures that the conditions for coherent
control [3] are satisfied.

The rates of the PI and AI processes mainly depend on �,
the body-fixed (BF) projection of the electronic angular
momentum on r, the interatomic axis. It is therefore nec-
essary to express the j�M

Ne� i states in terms of the j��
Ne� i BF

states. We adopt the rotating atom approximation [7] ac-
cording to which the axis of quantization of the electrons
faithfully follows the internuclear separation vector. This
establishes a 1:1 correspondence between theM values and
the � values as the atoms approach one another. Hence, the
(even parity) linear combination in the BF frame is written
as,

 j i � j�Arie
iK�Rc:m:�ik�r

X2

��0

j��
Ne� ia�; (3)

where � � j�j, and (due to the assumed even parity) a� �
�aM � a�M�.

Scattering theory.—The basic formulae for our purposes
are found in Refs. [8–10] giving the scattering amplitudes
for PI and AI based on O’Malley’s theory of dissociative
attachment [11,12]. Prior to the collision, the internuclear
momentum vector k has magnitude k and direction k̂. Here
k is given in units of temperature. After the collision, its
magnitude is kf and its direction is k̂f. Asymptotically, the
Penning electron departs along the k̂" direction with en-
ergy ". The energy of the emitted electron is related to the
collisional energy E and the energy of the nuclei after the
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collision E0 by the conservation of energy E� "0 � "�
E0, with "0 � E� � IE being the difference between the
excitation energy of the metastable Ne� atom and the
ionization energy of the target Ar atom.

The scattering amplitude, which is exact within the
Born-Oppenheimer approximation, is given by [8,9,13]

 f�k̂f; "; k̂"; k� � �
2Mr�

1=2
"

�4�@�2

�kf
k

�
1=2
h "jV";k̂"

j di; (4)

where Mr is the reduced mass of the nuclei and �" is the
density of electronic continuous states.  d�r� is the incom-
ing wave function calculated on the optical potential
V��r� �

i
2 ��r� and  "�r� describes the system on the exit

channel V��r�. The electronic part is completely included
in V";k̂"�r�, which is the probability amplitude for the

emission of an electron with ", and k̂".
Partial-wave expansions of "�r�, V";"̂�r�, and d�r�, and

the evaluation of the integral over r will give, for the
special case when the space-fixed z axis is along k,

 f �
�1=2

ik

X
‘;�;l;l0

il�l
0
�2l� 1��2l0 � 1�1=2 l0 ‘ l

0 0 0

� �

	
l0 ‘ l
�� � 0

� �
Sll0‘�"�Yl0���k̂f�Y‘��k̂"�; (5)

with the partial-wave S matrix in terms of the phase shifts
�l and �l

0

f of the radial partial-wave components  ld and  l
0

 Sll0‘�"� � �i
4Mr�

1=2
"

@
2 ei��

l��l
0

f �h l
0

" jV"‘j ldi; (6)

where V"‘�r� 
 �‘���r�=2��1=2.
For crossed beams, in the rotating atom approximation,

we find that the scattering amplitude for a linear superpo-
sition a� can be written as

 fa�k̂f; "; k̂"; k� �
X
�

a�f��k̂f; "; k̂"; k�; (7)

with f��k̂f; "; "̂; k;�� given by Eq. (5) and Sll0‘�"� replaced
by

 Sl;�l0‘ �"� � �2i
2Mr�

1=2
"

@
2 ei��

l��l
0

f �h l
0

" jV�
"‘j 

l
di; (8)

for PI, and

 Sl;�l0‘ �"� � �2i
�

2Mr��"
@

2

�
1=2
ei�

l
h v0l0 jV�

"‘j 
l
di; (9)

for AI [14]. The V�
"‘�r� matrix elements are related to the

ionization widths, ���r� as [5,8,9], V�
"‘�r� 


�‘����r�=2��1=2. The �� are obtained as in Ref. [6], using
methods in [14–17].

The differential cross section for PI is obtained by
squaring the scattering amplitude Eq. (5). In the rotating
atom approximation we obtain

 �q�k̂f; "; k̂"; k;a�� �

��������
X
�

a�fq��k̂f; "; k̂"; k�
��������

2
; (10)

where q indicates the exit channel. There are three possible
exit channels characterized by the electronic state of the
products: X2��1=2, A1

2�3=2, and A2
2�1=2. The entrance

channel optical potential is connected with each of the
exit channels using Morgner’s � splitting [18,19]. We use
optical potentials for the entrance channel derived directly
from experiment [14,15]. Since data is available only for
scattering experiments at thermal energies (above 1 K), the
optical potentials do not include effects associated with
very slowly moving atoms (e.g., hyperfine interactions).

The sum Eq. (10) can be expanded to give

 �q�k̂f; "; k̂"; k;a�� �
X
��0

a��0a��q�0� (11)

with �q�0� � f�q�0fq�. Since we are interested in the total
ionization cross section, we sum over all the exit channels,
and integrate over the solid angles k̂" and k̂f, and over the
emitted electron energy ". It is easy to see from the form of
the scattering amplitude that the integration over the solid
angles yields a Kronecker delta function, thus simplifying
the expressions for the f�q�0fq� products to

 f�q�0fq� �
�

k2

X
‘ll0
�2l� 1��2l0

� 1�
l0 ‘ l
0 0 0

� �
2
Sl�

0�
l0‘ �q; "�S

l�
l0‘�q; "�: (12)

The PI cross section, �PI�a��, obtained after integrating
over the energy of the emitted electron and summing over
all exit channels, is,

 �PI�a�� �
X
�0�

a��0a��PI
�0�: (13)

As a first example, we examine coherent control ob-
tained using only two ��� 0; 1� states [similar results were
obtained for the ��� 0; 2� pair, as shown in the tables
below], for which

 �PI�a�� � ja0j
2�PI

0 � ja1j
2�PI

1 � 2 Re�a�0a1�
PI
01�; (14)

where �PI
� � �PI

��.
Similar expressions for AI are obtained by summing

over the exit channels and bound states,

 �AI � ja0j
2�AI

0 � ja1j
2�AI

1 � 2 Re�a�0a1�
AI
01�: (15)

Note the crucial interference term, dependent on the mag-
nitude and phase of the ai, which allows control over the
cross sections by varying these coefficients.

Computational results.—Although results are reported
for collisions at temperatures up to 1 K, our main focus is
on cold collisions at a temperature of 1 mK and on ultra-
cold collisions at 1 �K. At the low temperatures consid-
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ered, the PI or AI cross sections are very large since the two
atoms are in the vicinity of one another for an extended
period of time. Further, in the ultracold case only the s
partial wave contributes, with three angular momentum
states contributing in the cold case.

For these energies the relative velocities between the
collisional pair are 
1 and 
0:006 m=s, respectively.
These relative velocities are experimentally attainable us-
ing laser cooling and manipulation techniques. For ex-
ample, the atoms can be cooled and trapped in a 3D
optical lattice, then adiabatically accelerated along a single
axis [20]. This setup can reach velocities of up to a few
meters per second, and a kinetic energy spread of 150–
200 nK around the central beam velocity. The present
collisional scenario would require two 3D lattice setups

in order to control both scattering particles. The internal
state superposition can be prepared [21] after cooling while
the atoms are trapped in the lattice using, e.g., stimulated
Raman adiabatic passage (STIRAP) [22] or coherent popu-
lation trapping (CPT) [23].

Consider first control results across a broad spectrum of
energies up to temperatures of 1 K; Fig. 1 shows the cross
sections for � � 0 and � � 1 scattering as a function of
energy. Also shown are the maximum and minimum con-
trolled cross sections (optimized over the ai coefficients) at
each energy for the � � 0 plus � � 1 linear combination.
Several resonances [24] are evident, since the collision
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FIG. 1. PI and AI cross sections for � � 0; 1 linear combina-
tion. � � 0—solid line; � � 1 —dashed line; maximum and
minimum for the linear combination of � � 0; 1—dotted line.

TABLE I. Cross section for cold collision at T � 1 mK. Rows
labeled ‘‘� � 0; 1’’ and ‘‘� � 0; 2’’ show the minimum and
maximum of the �PI and �AI, obtained by varying the ai for the
indicated superposition.

� �PI ( �A2) �AI ( �A2)

0 74.68 346.91
1 64.90 306.25
2 13.75 87.01
0,1 1:27	 10�2–139:57 3	 10�2–653:13
0,2 0.63–87.80 0.60–433.32
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FIG. 2. Coherent control contours for (a) PI for � � 0; 1 in
cold collisions at T � 1 mK; (b) AI for � � 0; 2 in ultracold
collisions at T � 1 �K. The parameters 	 and �
 are defined
via: a� � sin	ei
� and a�0 � cos	ei
�0 , with �, �0 � 0; 1; 2.
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energy is very close to the dissociation threshold for the
Ne�-Ar quasimolecule. Noteworthy is that control is ex-
tensive, with enhancement and suppression of both cross
sections being possible at both resonant and nonresonant
energies.

Table I presents numerical results for the cold collision
(1 mK) case. We see that it is possible to actively change
the AI and PI cross sections by as much as 4 orders of
magnitude for the � � 0; 1 linear combination and 3 orders
of magnitude for the � � 0; 2 linear combination. For both
linear combinations the position of the minima and max-
ima for �PI and �AI occur at close points in the parameter
space (not shown here). A similar observation has been
noted at higher temperatures (above 1 K), indicating that
both PI and AI cross sections can be controlled simulta-
neously [6]. Sample results for the control of �PI as a
function of ai for the cold collision case are shown in
Fig. 2(a).

Ultracold collisions, where only s waves contribute to
the process, show even more dramatic behavior. As seen in
Table II, active changes of up to 4 orders of magnitude,
using the � � 0; 1 superposition states, and up to 3 orders
of magnitude, using the � � 0; 2 superposition states, are
possible. The AI process can also be almost as well con-
trolled. The resulting �AI cross sections are shown in
Fig. 2(b) for ultracold collisions as function of the ai.
Note that in all cases, the maxima and minima in the
control plots (Figs. 1 and 2) are well separated, making
the experiment less sensitive to the control parameters.

In summary, we have shown the possibility of a huge
range of control of the PI and AI cross sections in Ne� �
Ar cold and ultracold collisions. Control is achieved by
initiating the collision in a judiciously chosen superposi-
tion of Ne� quantum states. Such states can be readily made
using new STIRAP techniques [21]. Our results show a
wide range of controllability for both PI and AI. For PI the
minimum of the cross section is found to be orders of
magnitude smaller than the incoherent mixture of � � 0,
1 or � � 0, 2. In the AI reaction the effects are even more

dramatic, showing a minimum 4 orders of magnitude
smaller than that of the incoherent mixture � � 0, 1 and
3 orders of magnitude smaller than the � � 0; 2 mixture.

We thank Professor Peter Siska for making his computer
programs available to us, Professor Klaas Bergmann for
extensive discussions, and Dr. Michael Spanner for his
design of optical lattice implementations of this scenario.
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