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An old idea for explaining the hierarchy is strong gauge dynamics. We show that such dynamics also
stabilizes the moduli in M theory compactifications on manifolds of G2 holonomy without fluxes. This
gives stable vacua with softly broken supersymmetry, grand unification, and a distinctive spectrum of TeV
and sub-TeV sparticle masses.

DOI: 10.1103/PhysRevLett.97.191601 PACS numbers: 11.25.Wx, 11.25.Mj, 12.10.Dm, 12.60.Jv

Stabilizing hierarchies and moduli.—M theory (and its
weakly coupled string limits) is a consistent quantum
theory including gravity, particle physics, and much
more. Although apparently unique, the theory has a large
number of solutions, manifested by the presence of moduli:
massless scalar fields with classically undetermined vac-
uum expectation values (VEVs), whose values determine
the masses and coupling constants of the low energy
physics.

In recent years, there has been substantial progress in
understanding mechanisms which stabilize moduli in vari-
ous corners of theM theory moduli space. In particular, the
stabilization of all moduli by magnetic fields (fluxes) in the
extra dimensions, perhaps also combined with other quan-
tum effects, has been reasonably well understood in the
context of type IIB string theory [1,2], M theory [3], and
type IIA string theory [4]. After stabilizing the moduli, one
still has to explain why MW=mpl � 10�16.

The effective potential of these compactifications fits
into the framework of a low energy supergravity theory
in four dimensions. A well known property of the latter is
that there is a universal contribution to scalar masses of the
order of the gravitino mass m3=2. Therefore, without mi-
raculous cancellations, in theories in which m3=2 is large,
the Higgs boson mass is also large. In M theory and
type IIA flux vacua, the vacuum superpotential is O�1� or
larger in Planck units. This gives a large m3=2 (unless the
volume of the extra dimensions is large, ruining standard
unification). In heterotic flux vacua [5],m3=2 can be smaller
but only by a few orders of magnitude. Thus, in these
vacua, stabilizing the moduli using fluxes fails to solve
the hierarchy problem, viz. to generate and stabilize the
hierarchy between the electroweak and Planck scales.

In type IIB theory, this is not so:m3=2 can be tuned small
by choosing fluxes. One can also address the possibility of
generating the hierarchy through warping [6] in this frame-
work [1]. The hierarchy problem is less well understood in
other corners of the M theory moduli space.

Our focus will be M theory, and we will henceforth
switch off all the fluxes else the hierarchy will be de-

stroyed. Supersymmetry then implies that the seven extra
dimensions form a space X with G2 holonomy. In these
vacua, non-Abelian gauge fields are localized along three
dimensional submanifolds Q � X at which there is an
orbifold singularity [7], and chiral fermions are localized
at points at which there are conical singularities [8–10].

These vacua can have interesting phenomenological
features, independently of how moduli are stabilized: The
Yukawa couplings are hierarchical; proton decay proceeds
at dimension six with distinctive decays; grand unification
is very natural; the � term is zero in the high scale
Lagrangian [8,11–13]. Also, since the Q’s generically do
not intersect each other, supersymmetry breaking will be
gravity mediated in these vacua. Therefore, it is of consid-
erable interest to understand whether or not there exist
mechanisms which can (a) stabilize the moduli of such
compactifications, (b) generate a hierarchy of scales, and,
if so, (c) what is the resulting structure of the soft terms and
their implications for LHC?

All the moduli fields si have axionic superpartners ti,
which, in the absence of fluxes, enjoy a Peccei-Quinn shift
symmetry. This is an important difference with respect to
other M theory limits such as heterotic or type IIB.
Therefore, in the zero flux sector, the only contributions
to the superpotential are nonperturbative. These can arise
either from strong gauge dynamics or from membrane
instantons. Since the theory of membrane instantons in
G2 manifolds is technically challenging [14], we will
restrict our attention to the strong gauge dynamics case
henceforth.

Furthermore, unlike its weakly coupled string limits, in
M theory the nonperturbative superpotential, in general,
depends upon all of the moduli. Hence, one would expect
that the effective supergravity potential has isolated min-
ima. Our main conclusion is that strong gauge dynamics
produces an effective potential which indeed stabilizes all
moduli and generates an exponential hierarchy of scales.
After describing this result, we also briefly describe the
pattern of soft breaking terms which these vacua predict
and begin to discuss the consequences for the LHC.
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The moduli potential.—The moduli Kahler potential is
difficult to calculate explicitly. However, a family of
Kahler potentials consistent with G2 holonomy and known
to describe accurately some explicit examples of G2 mod-
uli dynamics was given in Ref. [15]. These are defined by
 

K � �3 ln�4�1=3VX�; VX �
YN
i�1

saii ;

with
XN
i�1

ai � 7=3;
(1)

where VX is the volume of the G2-holonomy manifold as a
function of the N scalar moduli si (in 11D units). The
superpotential for the simple case of a hidden sector with-
out charged matter is, therefore,

 W �
XM
k�1

Ake
ibkfk ; fk �

XN
i�1

Nk
i zi �

�k
2�
� i

4�

g2
k

: (2)

M is the number of hidden sectors whose gauginos con-
dense, bk � 2�=ck, with ck the dual coxeter number of the
kth gauge group whose 4d gauge coupling function fk is an
integer linear combination of the moduli fields zi � ti �
isi. The Ak are (renormalization-group-scheme-dependent)
numerical constants. More general cases will be described
in Ref. [16].

Note that all of the ‘‘parameters’’ which enter the po-
tential, i.e., (bk, Ak, Nk

i ) are constants. bk and Nk
i are

straightforward to determine from the topology of X. The
one-loop factor Ak is more difficult to obtain, but, e.g., the
threshold corrections calculated in Ref. [12] show that they
can be computed and can take a reasonably wide range of
values in M theory.

At this point, the simplest possibility would be to con-
sider a single hidden sector gauge group. While this does in
fact stabilize all the moduli, it is (a) nongeneric and
(b) fixes the moduli in a place which is strictly beyond
the supergravity approximation. Therefore, we will con-
sider two such hidden sectors, which is more representative
of a typical G2 compactification as well as being tractable
enough to analyze. The superpotential, therefore, has the
following form:

 Wnp � A1eib1f1 � A2eib2f2 : (3)

The scalar potential can be computed fromK andW, and
after integrating out the axions (without loss of generality,
we chose Ak > 0), it is given by, in 4d Planck units,
 

V �
1

48�V3
X

�X2

k�1

XN
i�1

ai�ki ��
k
i bk � 3�bkA2

ke
�2bk ~�k� ~a

� 3
X2

k�1

A2
ke
�2bk ~�k� ~a � 2

XN
i�1

ai
Y
k�1

2�ki bkAke
�bk ~�k� ~a

� 3
�
2�

X2

k�1

bk ~�k � ~a
�Y2

j�1

Aje�bj ~�
j� ~a
�
; (4)

where we introduced a variable

 �ki 	
Nk
i si
ai
�no sum�; Imfk � ~�k � ~a: (5)

Vacua.—Vacua of the theory correspond to stable criti-
cal points of the potential. Although, as we will see, the
potential has stable vacua with spontaneously broken su-
persymmetry, it is instructive to analyze the supersymmet-
ric vacua. For simplicity, we will describe here only the
special case when the two groups have the same gauge
coupling (explicit examples are given later). See [16] for
the more elaborate general case.

In this special case, we have

 N1
i � N2

i � Ni ) �1
i � �2

i � �i 	
Nisi
ai

: (6)

As a result, the F terms [Fi � @iW � �@iK�W] simplify
significantly. Solving Fi � 0 yields:

 

�i 	 � � �
3��� 1�

2��b1 � b2�
;

with
A2

A1
�

1

�
e�7=2��b1�b2�����1�=��b1�b2��;

(7)

where � is determined by the second equation in (7). Since
�i is independent of i, it is also independent of the number
of moduli N, which means that this solution fixes all
moduli for a manifold with any number of moduli.

In the limit of large �, � is given by [for gauge groups
SU�P� and SU�Q�]

 ��
3

7�b2 � b1�
log
A2b2

A1b1
�

3

14�
PQ
P�Q

log
A2P
A1Q

: (8)

This is a very good approximation for � > O�1� and
shows that the moduli VEVs can be greater than 1 for
gauge group ranks less than 10, yielding solutions within
the supergravity approximation. However, there will be an
upper bound on the moduli VEVs in these vacua, since we
expect that A1, A2, P, and Q have upper limits. The
dependence of (8) on the input parameters is similar to
those obtained for other constructions [17]. Once � is
determined, the moduli si are found from (6) and the
hierarchy between the moduli VEVs is determined by the
ratios ai=Ni. For cases when PA2=QA1 is of order 1, it is
not clear if additional corrections change the results sig-
nificantly. Similar issues were faced in Refs. [17,18].

Minima with spontaneously broken supersymmetry.—
Formally, the potential has 2N � 1 extrema with sponta-
neously broken supersymmetry and one supersymmetric
one [16]. For simplicity, we will exhibit these for the two
moduli case. For example, consider the parameter set

 fA1;A2; b1; b2;N1;N2; a1; a2g �

�
0:12;2;

2�
8
;
2�
7
;1;1;

7

6
;
7

6

�
:
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The solutions are
 

s�1�1 
 13:05; s�1�2 
 13:05 �supersymmetric extremum�;

s�2�2 
 13:59; s�2�2 
 13:59 �de Sitter extremum�;

s�3�1 
 2:61; s�3�2 
 23:55 �nonsupersymmetric anti-

de Sitter minimum�;

s�4�1 
 23:55; s�4�2 
 2:61 �nonsupersymmetric anti-

de Sitter minimum�: (9)

The supersymmetric extremum in (9) is a saddle point.
The two stable minima spontaneously break supersymme-
try. Visual plots of the potential can be seen in Ref. [19].
The stable minima appear symmetrically, though generi-
cally, for a1 � a2 and/or N1 � N2; one of the minima will
be deeper than the other. For the case under investigation,
the volume is stabilized at the value VX � 122:3, which is
presumably large enough for the supergravity analysis to
hold.

Explicit examples.—To prove the existence of a
G2-holonomy metric on a compact 7-manifold, X is a
difficult problem. There is no analogue of Yau’s theorem
for Calabi-Yau manifolds which allows an ‘‘algebraic’’
construction. Nevertheless, Joyce and Kovalev have suc-
cessfully constructed many smooth examples [20].
Furthermore, dualities with heterotic and type IIA string
vacua also imply the existence of many singular examples.
The vacua discussed here have two gauge groups so X will
have two submanifoldsQ1 andQ2 of orbifold singularities.

Kovalev constructs G2 manifolds which can be de-
scribed as the total space of a fibration, where the fibers
are 4d K3 surfaces with orbifold singularities which vary
over a 3-sphere. One then obtains G2 manifolds with
orbifold singularities along the sphere. For example, if
the generic fiber has both an SU�4� and an SU�5� singu-
larity, then the G2 manifold will have two such singular-
ities, both parametrized by disjoint copies of the sphere. In
this case,N1

i andN2
i are equal becauseQ1 andQ2 are in the

same homology class, which is precisely the special case
that we consider above.

A similar picture arises from the dual perspective of the
heterotic string on a T3-fibered Calabi-Yau. Then, if the
hidden sector E8 is broken by the background gauge field
to, say, SU�5� � SU�2�, the K3 fibers of the dual G2

manifold generically have SU�5� and SU�2� singularities,
again with N1

i � N2
i (or N1

i � kN2
i , in general).

Finally, we note that Joyce’s examples typically can
have several sets of orbifold singularities which often fall
into the special class we have considered.

Phenomenology.—As mentioned earlier, there are many
local minima with spontaneously broken supersymmetry.
One can study the particle physics features of these min-
ima. For illustration, we will compute some phenomeno-
logically relevant quantities for the minima (9):

 

V�3�;�4�0 
��5:1� 1010 GeV�4 �cosmological constant�;

m�3�;�4�3=2 �mpeK=2jWj 
 2081 GeV �gravitino mass�;

M11 �

����
�
p

mp

V1=2
X


 3:9� 1017 GeV �11dim Planck scale�;

��1�g �mpe��b1=3��iNisi 
 2:6� 1015 GeV;

��2�g 
 9:7� 1014 GeV �gaugino cond: scales�; (10)

where mp � 2:43� 1018 GeV and the hidden sector
strong coupling scales are defined as in Ref. [21]. Thus,
standard gauge unification is naturally compatible with low
scale supersymmetry in our theory. An investigation of the
entire ‘‘parameter’’ set shows that a significant fraction of
models have similar features [16]. Note that to obtain much
lower mass scales requires unnaturally large rank gauge
groups and large A2=A1 ratios. Presumably, the latter can-
not reach, say, O�100�, implying a lower bound on the
supersymmetry breaking scale in these vacua.

A large negative V0 is not realistic, and one might worry
that the features obtained above may not survive when one
obtains (or tunes) V0 to the correct value. We argue that this
is not the case. First, there may exist mechanisms in these
vacua similar to the Bousso-Polchinski mechanism [22] in
IIB. The M theory dual of IIB fluxes, in principle, ‘‘scan
V0,’’ leaving a minimum very close to the one discussed
here.

Furthermore, in Ref. [16] we have studied the vacuum
structure with additional nonperturbative contributions and
hidden sector matter, as in Ref. [23]. These can give rise to
vacua with a completely different V0, e.g., de Sitter vacua,
but with essentially identical phenomenology. Moreover, if
one assumes that the space ofG2 manifolds is such that one
can finely scan the constants Ai, then we have checked that
it is possible to scan V0 to small values without changing
the phenomenology.

Soft supersymmetry breaking parameters.—Soft super-
symmetry breaking parameters (at Munif) can be calculated
in this framework—the gaugino masses Ma

1=2 are easier to
calculate than the scalars and trilinears. The gaugino
masses are given by:

 M1=2 � mp
eK=2Ki �jF �j@ifsm

2i Imfsm
; fsm �

XN
i�1

Nsm
i zi; (11)

where the fsm is determined by the homology class of the
3-cycle, Qsm. From (11), the normalized gaugino mass in
these vacua can be expressed as

 jM1=2j�

�
2��b1�b2�

3���1�

PN
i�1N

sm
i si�iPN

i�1N
sm
i si

�1
�
�m3=2: (12)

At the supersymmetry extremum, using Eq. (7) for �i in
(12), M1=2 vanishes as expected implying a perfect cancel-
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lation between the two terms. The moduli for the anti-
de Sitter minima with spontaneously broken supersymme-
try are such that there is a subtle cancellation (albeit not
perfect) between the two terms, leading to a suppression of
the gauginos relative tom3=2. This will be explained further
in Ref. [16].

For the illustrative two moduli case with a pure super
Yang Mills hidden sector, take Nsm

1 � 2, Nsm
2 � 1, so that

the gauge kinetic function is fsm � 2z1 � z2. The gaugino
masses for the two vacua in (9) are then

 jM�3�;�4�1=2 j � mp

��������
eK=2Ki �jF �j@ifsm

2Imfsm

��������
 f165; 97g GeV:

(13)

Similar values arise for a significant fraction of the pa-
rameters. The tree level gaugino masses are universal but
the nonuniversal one-loop anomaly mediated contributions
are also non-negligible.

With V0 tuned, the scalar masses are equal to m3=2 times
a factor which is generically unsuppressed in these vacua,
so the scalar masses are expected to be of O�m3=2�—
heavier than the gauginos. The trilinears (with the
Yukawas factored out) turn out to be � m3=2. Since the
scalars are heavier than the gauginos, the lightest super-
symmetric particle is a neutralino.

(13) gives a renormalized gluino mass of about
f500; 300g GeV at the TeV scale and will give a clear
signal at the LHC beyond the standard model background.
For example, there will be an excess of events with two
charged leptons, at least two jets with a transverse momen-
tum greater than 100 GeV, and a large missing energy from
the lightest supersymmetric particle. This signal will be
seen even with low luminosity.

The fact that the gaugino masses are suppressed but the
scalars are not implies that LHC data could distinguish
these vacua from the type IIB vacua considered in
Ref. [24]. Some large volume type IIB vacua may give a
spectrum similar to M theory [25], but we expect that a
more thorough study [16], e.g., of the trilinears, will show
that the LHC is capable of distinguishing these also, using
techniques in Ref. [26].

Remarks and conclusions.—The stabilization of moduli
and the hierarchy by strong dynamics inM theory seems to
be quite generic and robust. The electroweak scale emerges
from the fundamental theory even though the fundamental
scale and compactification scale are much larger. Focusing
on mechanisms which stabilize the hierarchy was useful
and complementary to the approach of ‘‘searching for the
Calabi-Yau which gives the spectrum at the GUT scale.’’
The � problem, electroweak symmetry breaking, flavor
and CP physics, dark matter, inflation, and LHC physics
can all be addressed within this framework, and some of
these studies are underway [16].
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