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A theory of lattice Boltzmann (LB) models for hydrodynamic simulation is developed upon a novel
relation between entropy construction and roots of Hermite polynomials. A systematic procedure is
described for constructing numerically stable and complete Galilean invariant LB models. The stability of
the new LB models is illustrated with a shock tube simulation.
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The lattice Boltzmann (LB) method is a powerful new
approach to hydrodynamics, with applications ranging
from large Reynolds number flows to flows at a micron
scale, porous media, and multiphase flows [1]. The LB
method solves a fully discrete kinetic equation for popu-
lations fi�x; t�, designed in a way that it reproduces the
Navier-Stokes equations in the hydrodynamic limit.
Populations correspond to discrete velocities ci, i �
1; . . . ; N, which fit into a regular spatial lattice with the
nodes x. This enables a simple and highly efficient
‘‘stream-along-links-and-equilibrate-at-nodes’’ realization
of the LB algorithm.

In spite of a large number of works to date, only the
simplest, low-accuracy LB model for isothermal hydro-
dynamics has been fully understood [2–6]. This model was
derived in various ways, including a discretization of the
Boltzmann equation with the Gauss-Hermite quadrature in
the velocity space [3,5], where the discrete velocities are
zeroes of the cubic Hermite polynomial H 3. Recently, this
approach was extended to a weakly compressible flow
simulation [6]. Most importantly, numerical stability was
linked to the entropy construction [4,7].

The route of higher-order Gauss-Hermite quadratures
promised a systematic derivation of new computation-
oriented kinetic models with larger velocity sets [3], espe-
cially of long-needed complete Galilean invariant models
(according to [8,9]) and thermal models for compressible
flow simulations. Unfortunately, since the roots of Hermite
polynomials of order four and higher are irrational, the
corresponding discrete velocities cannot be fit into a lattice.
Thus, the LB space-time exact discretization procedure is
not possible for the quadrature-based models, and addi-
tional effort for their implementation is required [5] (in the
presence of off-lattice structures such as curved boundaries
and grid refinement, other discretization strategies are
required; see, e.g., [10] and references therein).

Therefore, the search for new models on a lattice has
remained trial and error [9]. This is a daunting task of
searching all possible discrete velocity sets for the one that
delivers a stable and complete Galilean invariant LB
scheme. However, one aspect that defies intuition is that
all the schemes obtained so far on larger lattices are
numerically unstable [11].

In this Letter, we solve this long-standing problem of a
derivation of numerically stable and highly accurate LB
models. Let us outline a systematic study. The solution is
based on a novel key relation between the entropy con-
struction and the roots of Hermite polynomials, which we
find by considering the one-dimensional isothermal case.
Admissible LB velocities are found as rational-number
approximations to the (irrational) ratios of the Hermite
roots. The result is immediately generalized to arbitrary
dimension. We show that the entropic construction leads to
numerically stable complete Galilean invariant LB models.
Finally, we indicated how to extend these results to thermal
LB models.

We begin our systematic construction with the one-
dimensional isothermal case (D � 1). The equilibrium
populations, feq

i , minimize the entropy function H,

 H �
XN
i�1

fi ln
�
fi
Wi

�
; (1)

with appropriately chosen weights Wi > 0, under the
constraints of mass and momentum conservation,PN
i�1f1; cigf

eq
i � f�; �ug. Since it is well know how to

construct the entropy (1) for the low-accuracy LB model
with three velocities f0;�1g [4], we here proceed with a
generic four-velocity set, f�m;�ng (N � 4). For the time
being, we do not require m and n to be an integer. The goal
is now to derive the weights W�m, W�n, and the reference
temperature T0�m; n�, at which the equilibrium satisfies the
constitutive relations for the pressure Peq and the energy
flux Qeq, known from the Maxwell-Boltzmann (MB) dis-
tribution function at a fixed temperature T0:

 Peq �
XN
i�1

feq
i c

2
i � �T0 � �u2;

Qeq �
XN
i�1

feq
i c

3
i � 3�T0u� �u3:

(2)

The term �u3 in the energy flux is required in order to
achieve the complete Galilean invariant LB model.
Alternatively but entirely equivalently, the same MB rela-
tions can be found upon the Chapman-Enskog analysis of
the hydrodynamic limit of the LB equations (see, e.g.,
[8,9]). The low-accuracy standard LB models [2] miss
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this term and introduce an error into the isothermal Navier-
Stokes equations [8,9]. Although this error is not signifi-
cant if u < 0:1, this value is at the limit of capacities of the
standard LB models and precludes to use higher values of
velocity in the isothermal LB simulations (see, e.g., [12]).

Using a series expansion in powers of u to obtain feq
i

from the minimization problem, we find that the zeroth-,
the first-, and the second-order terms (2) are recovered with
the following weights and the reference temperature:

 W�m �
m2 � 5n2 �

����������������������������������������
m4 � 10n2m2 � n4
p

12�m2 � n2�
; (3)

 W�n �
5m2 � n2 �

����������������������������������������
m4 � 10n2m2 � n4
p

12�m2 � n2�
; (4)

 T0 �
m2 � n2 �

����������������������������������������
m4 � 10n2m2 � n4
p

6
: (5)

At this point we are left with just one ‘‘degree of free-
dom’’—the ratio between the velocities, r�m; n� � m=n.
Without any loss of generality, we assumem< n. The ratio
r < 1 is fixed by the requirement to reproduce the remain-
ing cubic term (�u3) in Qeq (2). This happens if and only if
r � r�4, where

 r�4 �
���
3
p
�

���
2
p
� 0:31784: (6)

If m and n satisfy (6), we obtain the corresponding weights
(3) and (4):W��m �

1
4�3�

��
6
p
�
,W��n �

1
4�3�

��
6
p
�
. Entropy func-

tion (1) with these weights sets up the desired kinetic
theory: The corresponding equilibrium recovers the
Maxwell-Boltzmann relations for the pressure and energy
flux (2) and can be used, for example, to write up the
simplest Bhatnagar-Gross-Krook (BGK) kinetic equation,
resulting in the complete Galilean invariant Navier-Stokes
equations in the hydrodynamic limit.

The following observation is striking: precisely the same
ratio (6) is satisfied by the roots of the fourth-order Hermite
polynomial H 4. The four roots of H 4 are f�a;�bg,

where a �
����������������
3�

���
6
pp

and b �
����������������
3�

���
6
pp

. It is straightfor-
ward to check that, indeed, a=b � r�4. In the Gauss-
Hermite quadrature model based on zeroes of H 4, the
equilibrium does satisfy the constitutive relations (2) [5].
Here, quite remarkably, we recovered the same result
avoiding the quadrature. Note that only the ratio of the
velocities is relevant, and not their absolute values. As we
already mentioned, this is not a LB model [integer-valued
velocities m and n cannot satisfy (6)].

Entirely the same situation happens in the next, five-
velocity case, f0;�m;�ng (N � 5). Since we have more
degrees of freedom, we require the Maxwell-Boltzmann
form of the fourth-order moment,

 Req �
XN
i�1

feq
i c

4
i � 3�T2

0 � 6�T0u2 � �u4: (7)

Now we can require that the pressure and energy flux
conditions (2) are satisfied entirely, which leads to the

following expressions for the weights and the reference
temperature:

 W0 �
�3m4 � 3n4 � 54m2n2 � �m2 � n2�D5

75m2n2 ; (8)

 W�m �
9m4 � 6n4 � 27n2m2 � �3m2 � 2n2�D5

300m2�m2 � n2�
; (9)

 W�n �
9n4 � 6m4 � 27n2m2 � �3n2 � 2m2�D5

300n2�n2 �m2�
; (10)

 T0 �
3m2 � 3n2 �D5

30
; (11)

 D5 �
���������������������������������������������
9m4 � 42n2m2 � 9n4

p
: (12)

Terms of zeroth and second order in (7) are also reproduced
with these weights and reference temperature, and, same as
above, we fix the ratio r � m=n to recover the highest-
order term �u4 in (7). This happens at r � r�5,

 r�5 �

���
5
p
�

���
2
p

���
3
p � 0:47449: (13)

The roots of the fifth-order Hermite polynomial H 5 are

f0;�c;�dg, where c �
������������������
5�

������
10
pp

and d �
������������������
5�

������
10
pp

,
and again their ratio obeys (13): c=d � r�5.

To this end, we recovered all the results found earlier
with the Gauss-Hermite quadrature [5] but within a com-
pletely different, direct approach of constructing the en-
tropy function. Either way we do not achieve integer-
valued velocities (r�4 and r�5 are irrational)—just the quad-
rature does not lead to new LB models.

However, with the present new approach, we actually
derived the weights and the reference temperature for
generic sets of discrete velocities, and we can proceed
with constructing the LB models in a systematic fashion,
as rational-number approximations. Namely, we shall
choose integer m and n in such a way that their ratio
approximates the limit values (6) or (13). Importantly,
any such approximation must be from below, r�m; n�<
r�4 or r�m; n�< r�5, respectively. Otherwise, the reference
temperature (5) and (11), respectively, lacks physical in-
terpretation (is complex valued).

In order to address the accuracy of the rational-number
approximations, it is convenient to introduce the following
form for the higher-order moments:
 

Peq � �T0 � �u2 � P4�r��u4;

Qeq � 3�T0u�Q3�r��u3;

Req � 3�T2
0 � R2�r��T0u2 � R4�r��u4:

(14)

Here, coefficients P4, Q3, R2, and R4 depend on approxi-
mation of r�4;5 with the ratios of integers r � m=n. In
Table I, we present results for several lattices.

Strikingly and nontrivially, some ‘‘obvious‘‘ lattices are
immediately ruled out. In particular, the first admissible
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four-velocity set is f�1;�4g; that is, for example, the set
f�1;�2g is prohibited. Indeed, in that case, the ratio of the
velocities is 0:5> r�4, and the reference temperature
T0�1; 2� (5) is nonphysical. For the same reason, a popular
five-velocity lattice f0;�1;�2g is also ruled out (0:5>
r�5). This explains why attempts to construct a LB model on
this lattice failed to produce a numerically stable scheme.

Two important conclusions can be drawn from Table I.
First, the quality of the reconstruction of the moments
monotonically depends on the closeness of the ratio
r�m; n� to the corresponding limit (Hermite) value.
Second, switching to the next number of discrete velocities
(from N to N � 1) does not spoil the quality already
reached at the N level. Indeed, the Maxwell-Boltzmann
values Q3 � 1, R2 � 6, and P4 � 0, which are recovered
by the four-velocity LB approximations in the limit
m=n! r�4, all remain correct for all the five-velocity LB
approximations, and only the remaining coefficient R4 is
monotonically improved. In other words, all the five-
velocity lattices given in Table I are completely Galilean
invariant isothermal LB models. FunctionsQ3�r� and R4�r�
for N � 4 and N � 5 are shown in Fig. 1 which reveals
monotonicity.

Thus, with the integer-valued velocities of Table I, and
the corresponding expressions for the weights, we set up
the lattice equilibria feq

i as minima of the entropy (1) and
hence the lattice BGK models [feq

i are easily derived by
perturbation in powers of u; see Eq. (15)]. All these models
are based on the entropy function (1), which is a prereq-
uisite for numerical stability. This concludes the classifi-
cation of the LB models in one dimension.

For a computational proof of concept, we present a
simulation of a one-dimensional shock problem with two
complete Galilean invariant LB models, the present en-
tropic model (ELBM) on the lattice f0;�1;�3g and the
lattice BGK (LBGK) model [9] on the lattice f0;�1;�2g,
which was ruled out by entropy argument. The initial
condition for the simulation was a density step, � � 3:0
for x < L=2 (L being the length of domain) and� � 1:0 for
x > L=2 (same as in [9]). Both the models were ran at

various values of the viscosity �. The present ELBM is
stable at any value of the viscosity. This is drastically
different from the LBGK [9], which becomes numerical
unstable even for moderate �. A typical situation is shown
in Fig. 2, corresponding to � � 0:138. The snapshot of the
density profile is taken a few time steps before the run for
the LBGK terminates; a pattern of instability is clearly
visible while the density at some lattice nodes becomes
negative. The oscillatory pattern of the ELBM at the shock
is due to the lack of artificial diffusivity and is pertinent to
all lattice Boltzmann schemes. A slight mismatch of the
profiles in Fig. 2 is due to the fact that the models operate at
different speed of sound cs (c2

s � 1 for the LBGK and c2
s �

T0 for the ELBM). Thus, the complete Galilean invariant
LB model found from the entropy considerations is stable
and clearly outperforms the nonentropic model.

Once the classification of one-dimensional lattices is
achieved, extension to higher dimensions is straightfor-
ward and follows the pattern of Gauss-Hermite quadrature
(cf. Ref. [5]). That is, the discrete velocities ci in the
D-dimensional case are tensor products of D copies of
the one-dimensional velocities, whereas the corresponding
weights Wi are algebraic products of the corresponding
weights in one dimension. Moreover, the reference tem-
perature does not depend on the dimension. Explicit ex-
pressions for the equilibrium can be derived, e.g., upon a
perturbation around the zero-velocity equilibrium feq

i �
�Wi. In particular, the simplest polynomial approximation
to third order in velocity u for all the lattices generated by
four- and five-velocity sets has the universal form

TABLE I. Reconstruction of the higher-order moments by
various LB models derived as rational-number approximations.

N Model ci P4 Q3 R2 R4 r � m
n

3 LB 0, �1 � 4
3 0 3 � 4

3

3 H 3 0, �
���
3
p

� 4
3 0 3 � 4

3
4 LB �1, �4 �0:041 0.266 3.799 �0:697 0.250 00
4 LB �2, �7 �0:012 0.425 4.275 �0:614 0.285 71
4 LB �3, �10 �0:005 0.536 4.610 �0:534 0.300 00
4 H 4 �

����������������
3�

���
6
pp

0 1 6 0 0.317 84
5 LB 0, �1, �3 0 1 6 0.031 0.333 33
5 LB 0, �2, �5 0 1 6 0.218 0.400 00
5 LB 0, �3, �7 0 1 6 0.345 0.428 57
5 H 5 0, �

������������������
5�

������
10
pp

0 1 6 1 0.474 49
1 MB Continuous 0 1 6 1

N=4

N=5

N=5

N=4
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FIG. 1. Monotonicity of moments reconstruction. Functions
Q3�r� (dashed lines) and R4�r� (continuous lines) are shown
for N � 4 and N � 5 lattices in a range between the first LB
model (r � 1

4 for N � 4 and r � 1
3 for N � 5) and the limit

Hermite model (r � r�4 and r � r�5, respectively), where real-
valued functionsQ3 and R4 (N � 4) and R4 (N � 5) terminate at
a branching point. Completely Galilean invariant isothermal
models (GI) correspond to Q3 � 1.
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 feq
i � �Wi

�
1�

ci�u�
T0
�
u�u�
2T2

0

�ci�ci� � T0����

�
u�u�u�

6T3
0

ci��ci�ci� � 3T0����
�
�O�u4�: (15)

We have verified with a direct computation that all
D-dimensional equilibria (15), D � 1, 2, 3, generated by
the one-dimensional five-velocity sets are completely
Galilean invariant; that is, they recover the Maxwell-
Boltzmann relation for the third-order moments,

 Qeq
��� � �T0�u���� � u���� � u����� � �u�u�u�;

(16)

where Qeq
��� �

PN
i�1 f

eq
i ci�ci�ci�, and hence recover iso-

thermal Navier-Strokes equations. It is quite important that
the proper classification of the one-dimensional lattices
automatically delivers lattices in any dimension. Note
that a recently introduced product-form method for evalu-
ation of equilibria [13] is much more efficient and should
be used instead of polynomial approximations for large
velocity sets. However, these implementation issues are out
of the scope of the present Letter.

Finally, the lattices and the entropy functions H derived
above for the isothermal case should be used for an exten-
sion to the thermal LB models. This amounts to finding
equilibria by minimization of the sameH functions subject
to
PN
i�1f1; c; c

2
i gf

eq
i � f�; �u; D�T � �u

2g, where energy
conservation is added to the constraints of the isothermal
problem. The thermal LB models obtained this way oper-
ate in a temperature window around the reference tempera-
ture. Notice that the standard isothermal LB model itself
can be extended to weakly compressible flows (small

temperature variations) [6]; therefore it is expected that
the thermal extensions of the present isothermal models
operate in a wider temperature window. These thermal
models will be studied elsewhere.

In conclusion, construction of lattice Boltzmann models
is put on a firm theoretical ground. Derivation of the
entropy functions is the unifying principle for lattice
Boltzmann models. Stability of the previously known
low-accuracy LB models has been already explained by
its relation to the entropy construction [4] (and consider-
ably enhanced in the framework of the entropic lattice
Boltzmann method [5,13]). In this Letter, for the first
time, this principle is demonstrated to be universally ap-
plicable and extended to long-needed complete Galilean
invariant LB models where other attempts failed. Now we
know that even the choice of the lattice was done in a
wrong way.

Finally, a belief about the relevance of the Gauss-
Hermite quadrature to the LB construction [14] is shown
to be largely an overstatement. All results derived by the
Gauss-Hermite quadrature are contained in the present
direct approach. Moreover, the quadrature as such does
not deliver new LB models. Instead, the rational-number
approximations derived herein give us LB models with any
desired accuracy.
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FIG. 2. Simulation of the one-dimensional shock tube problem
by the entropic (dashed line) and the nonentropic (continuous
line) LB schemes.
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