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A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-
QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the
quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The
proof is made strikingly simple by combining a physical model of measurement, an entanglement-based
description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf
et al., Phys. Rev. Lett. 96, 080502 (2006)].

DOI: 10.1103/PhysRevLett.97.190503 PACS numbers: 03.67.Dd, 42.50.�p, 89.70.+c

Continuous-variable (CV) quantum information [1]
has attracted a rapidly increasing interest over the past
few years. Several quantum key distribution (QKD)
schemes based on a Gaussian modulation of coherent
states of light combined with homodyne or heterodyne
detection have been proposed [2,3] and experimentally
demonstrated [4,5]. These protocols have the advantage
of being based on standard optical telecom components
and thereby of working at high repetition rates compared to
the schemes based on single-photon detectors. The first
security proof of CV-QKD was restricted to Gaussian
individuals attacks [2–4,6]. In such an attack, the eaves-
dropper (Eve) is assumed to interact individually—ac-
cording to a Gaussian map—with each of the signal
pulses sent over the line, and then to perform a Gaussian
(homodyne or heterodyne) measurement on her probe after
the basis information (if any) is disclosed but before the
full classical postprocessing. Later on, it was shown that
non-Gaussian individual attacks cannot beat Gaussian at-
tacks [7], so that studying the security against Gaussian
individual attacks is quite justified. This proof extends to
the case where Eve attacks finite-size blocks of pulses, but
does not cover the important class of collective attacks,
where Eve jointly measures all her probes (each having
interacted with a signal pulse) after the classical post-
processing has taken place [8–10]. The security versus
Gaussian collective attacks were recently studied in
[11,12], but a definitive proof of the optimality of
Gaussian attacks was missing.

In this Letter, we prove that the optimal collective attack
reduces to a Gaussian attack that is completely character-
ized by the covariance matrix of the quadratures observed
by the emitter (Alice) and receiver (Bob). This optimality
is plausibly even stronger in view of the fact that, in
discrete-variable QKD, the most general attacks, namely,
coherent attacks (where Eve coherently interacts with all
signal pulses and performs a joint measurement after the
classical postprocessing), cannot outperform collective at-
tacks [8,9], implying that it is sufficient to check the
security against collective attacks.

One-way QKD protocols with Gaussian continuous var-
iables are divided in two steps, a quantum communication
part followed by a classical postprocessing. In the quantum
part, Alice sends either a displaced squeezed state encod-
ing a random Gaussian variable or a displaced coherent
state encoding two Gaussian variables. Then, Bob per-
forms either homodyne (active basis choice) or heterodyne
measurement (no basis choice) on the received states (not
necessarily Gaussian) in order to decode Alice’s variable.
Once Alice and Bob have collected a sufficiently large list
of correlated data, they proceed with the classical postpro-
cessing. Unless Alice sent coherent states and Bob did a
heterodyne measurement, they first apply a sifting, where
they compare the chosen encoding and measurement quad-
ratures (x or p) and keep only the values for which the
quadratures match. Then, they apply parameter estimation;
i.e., they calculate the covariance matrix �AB of their
correlated variables from a randomly chosen sample of
their data. The optimal attack being Gaussian (as we will
prove below), �AB completely characterizes the channel as
the first-order moments of the quadratures do not play any
role. Finally, they apply one-way error correction and
privacy amplification to distill a secret key. The error
correction can be done in two ways: either direct recon-
ciliation (DR), where Bob corrects his data to Alice’s ones,
or reverse reconciliation (RR), where Alice’s and Bob’s
roles are interchanged [4].

Physical model of measurement.—Assume Alice and
Bob share a quantum state �AB and Alice then makes a
von Neumann measurement on system A, obtaining the
outcome a distributed according to the probability distri-
bution p�a�. This measurement can be realized by applying
an appropriate unitary operation UA on A together with an
ancilla, and subsequently observing the state of this ancilla
while tracing over the resulting quantum system A0 (see
Fig. 1). Considering the ancilla as a physical system, noted
as a after the action of UA, the joint state of a and B after
the measurement is

 �aB �
Z
dap�a�jaihaj � �aB: (1)
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Given the block-diagonal structure of �aB, the quantum
mutual entropy S�a:B� can be shown to coincide with the
Holevo bound �aB � S��B� �

R
dap�a�S��aB� [13]. Note

that the situation here is fully equivalent to that where a is a
classical preparer and B is a quantum preparation. Now,
assume Bob measures his system B by means of the unitary
UB in a similar way as Alice. The resulting joint state is
given by the diagonal density operator,

 �ab �
Z
dadbp�a; b�jaihaj � jbihbj: (2)

The quantum mutual entropy S�a:b� then simply reduces to
the Shannon mutual information Iab between the preparer’s
and the measurer’s internal states. The Holevo bound on
the accessible information then becomes a straightforward
consequence of the strong subadditivity of von Neumann
entropies, namely [13],

 Iab � S�a:b� � S�a:bB0� � S�a:B� � �aB: (3)

Entanglement-based version of CV-QKD.—The descrip-
tion of any prepare-and-measure CV-QKD protocol using
its equivalent entanglement-based scheme is very conve-
nient for security analyses [14]. Indeed, all protocols based
on the Gaussian modulation of Gaussian states and homo-
dyne (or heterodyne) measurement can be described in a
unified way; see Fig. 2. Alice and Bob are assumed to share
a bipartite quantum state �AB, whose purification is given
to Eve. Alice’s measurement of A is equivalent to a prepa-
ration scheme where she randomly chooses a, according to
p�a�, and sends the state �aB0

in the quantum channel so
that Bob receives the state �aB at the output. The unitaryUA
determines which measurement is performed: homodyne
measurements, corresponding to the preparation of
squeezed states, or heterodyne measurements, correspond-
ing to the preparation of coherent states (a then collectively

denotes two real numbers). The maximal information that
is accessible to Bob is given, in principle, by �aB �
S�a:B�. In practice, however, Bob applies an homodyne
(or heterodyne) measurement on B, giving b, so the ac-
tually extracted information is Iab � S�a:b�. Since there
are two possible encodings at Alice’s station and two
possible measurements at Bob’s station, there exist four
Gaussian protocols (three of them having been described in
[2,3,6]).

Consider now that Eve performs a collective attack: she
interacts individually with each signal pulse sent by Alice,
stores her resulting probes in a quantum memory, and then
applies a joint measurement on them at the end of the
classical postprocessing. As shown in [8,9], her informa-
tion is then limited by the Holevo bound �aE � S��E� �R
dap�a�S��aE�. Because Eve holds the purification of �AB,

this bound can be calculated from �AB: for example, when
Alice and Bob apply the same measurement, it reads
�aE � S��AB� �

R
dap�a�S��aB�. If �AB is assumed to be

Gaussian, then �aE can be directly computed from �AB
[11,12].

Extremality of Gaussian states.—To prove the optimal-
ity of Gaussian collective attacks, we also need a very
useful theorem, recently proven in [15]. Let us sketch it
here for bipartite states �AB that have zero first-order mo-
ments. Let f be a function satisfying the following
properties.

(1) Continuity in trace norm: If k��n�AB � �ABk1 ! 0

when n! 1, then f���n�AB� ! f��AB�.
(2) Invariance under local ‘‘Gaussification’’ unitaries:

f�UyG �U
y
G�
�N
ABUG �UG� � f���NAB �.

(3) Strong superadditivity: f��A1;...;NB1;...;N
� �

f��A1B1
� � 	 	 	 � f��ANBN � with equality if �A1;...;NB1;...;N

�

�A1B1
� 	 	 	 � �ANBN .

Then, for every bipartite state �AB with covariance
matrix �AB, we have that

 f��AB� � f��GAB�; (4)

where �GAB is the Gaussian state with the same �AB. The
proof can be summarized by

 

f��AB��
3 1

N
f���NAB ��

2 1

N
f�~�A1;...;NB1;...;N

�

�
3 1

N

XN
k�1

f�~�AkBk� ’
1;?
f��GAB�; (5)

where the superscripts label the assumptions used in each
step, while ~�A1;...;NB1;...;N


 UyG �U
y
G�
�N
ABUG �UG. The ?

stands for the use of a central limit result for quantum
states (see [15] for details). The Gaussification unitary UG
is a passive operation, which can be realized with a net-
work of beam splitters and phase shifters. Importantly for
what follows, the x and p quadratures of all N modes are
not mixed via Gaussification.
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FIG. 2 (color online). Entanglement-based scheme for CV-
QKD. Alice’s preparation is modeled by a measurement UA on
her half of an EPR pair. The channel is modeled by an unitary
interaction between mode B and Eve ancilla’s E. Finally, Bob’s
measurement is modeled by UB.
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FIG. 1 (color online). Alice’s measurement of system A of the
bipartite state �AB, giving the result a. Equivalently, a denotes
the internal state of a preparer who prepares system B according
to a.
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Optimality of Gaussian attacks.—The core of our proof
now consists in combining this extremality result with the
entanglement-based version of CV-QKD supplemented
with our physical model of measurement. In realistic pro-
tocols, Alice and Bob do not achieve the Holevo bound, but
only extract the mutual information Iab � S�a:b�. In con-
trast, Eve is assumed to have no technological limitation,
so, by collective attacks, she can attain the Holevo bound
�aE � S�a:E�. Then, using our notation, the achievable
DR secret key rate reads [8,9]

 K��AB� � S�a:b� � S�a:E� � S�ajE� � S�ajb�: (6)

The function K��AB� depends on the choice of the mea-
surement done by Alice and Bob (and on the sifting if any),
but does not depend on the purification of �AB. We now
will prove that K��AB� satisfies the three conditions of the
Gaussian extremality theorem. For this, we also need to use
the extension of this function over 2N modes ( �A � A1;...;N ,
�B � B1;...;N), namely,

 K�� �A �B� � S� �a: �b� � S� �a:E� � S� �ajE� � S� �aj �b�; (7)

where Alice (Bob) do the same measurement on her (his)N
modes, and Eve has the purification of � �A �B. Note that
Eq. (7) restricts to Eq. (6) when N � 1.

(i) Continuity: If k��n��A �B
� � �A �Bk1 � �, using Ulhmann’s

theorem and the well-known relations between the fidelity
and trace distance [16], we can find a purification j�i�n��A �BE

(j�i �A �BE) of ��n��A �B
(� �A �B) such that k�̂�n��A �BE

� �̂ �A �BEk1 �

2
���
�
p

. Then, considering that partial trace can only decrease
the trace norm [16], we have k��n��aE � � �aEk1 � 2

���
�
p

and k��n�
�a �b
� � �a �bk1 � 2

���
�
p

. Finally, the continuity of
von Neumann entropies implies the continuity of K. �

(ii) Invariance under local Gaussification unitaries:
Applying the local Gaussification operation UG �UG on
the product states j i�NABE (as shown in Fig. 3 for N � 2),
we obtain the state j ~ i �A �B �E. After the measurements on
Alice’s and Bob’s sides, the state becomes ~� �a �b �E. But
because the (homodyne or heterodyne) measurement and
the Gaussification operation can be interchanged, by ap-
plying UyG �U

y
G on modes �a and �b we recover the state

��NabE, which coincides with the state obtained by directly
measuring j i�NABE without Gaussification. Since the two
states ~� �a �b and ��Nab are related by a local unitary operation
UyG �U

y
G, and since the mutual von Neumann entropies

appearing in K��AB� are invariant under (any) local uni-
taries, we obtain the invariance of K��AB� under local
Gaussification unitaries. �

(iii) Strong superadditivity: We will restrict the proof to
two modes on each side, A1;2 and B1;2, the generalization to
N > 2 being straightforward. We have

 K��A1;2B1;2
� � S�a1a2jE� � S�a1a2jb1b2�; (8)

where the conditional entropies can be expressed as
 

S�a1a2jE� � S�a1ja2E��S�a2ja1E�� S�a1:a2jE�;

S�a1a2jb1b2� � S�a1jb1b2��S�a2jb1b2��S�a1:a2jb1b2�:

As a consequence of the strong subadditivity of
von Neumann entropies, we obtain the bound

 K � S�a1ja2E� � S�a1jb1b2�|��������������������{z��������������������}
�S�a1jA2B2E��S�a1jb1�

� S�a2ja1E� � S�a2jb1b2�|��������������������{z��������������������}
�S�a2jA1B1E��S�a2jb2�

(9)

(using the fact that conditioning can only decrease the
conditional entropy). The purification of A1B1 (A2B2)
being A2B2E (A1B1E), we obtain

 K��A1;2B1;2
� � K��A1B1

� � K��A2B2
�: (10)

The additivity of K��A1;2B1;2
� is a straightforward conse-

quence of the additivity of von Neumann entropies. �
Thus, using Eq. (4), we have proved that for all bipartite

quantum states �AB with covariance matrix �AB, one has
K��AB� � K��GAB�. This means that K��GAB� is a lower
bound on the secret key rate for any protocol (even non-
Gaussian) and collective attack (including non-Gaussian).
The only requirement for this result to hold is that Alice
and Bob use the second-order moments of the quadratures
in order to calculate this bound. In particular, for the
Gaussian-modulation protocols of [2–4,6], Eve’s optimal
attack is a Gaussian attack, in which case the bound is
saturated. Note that the above proof concerns DR [see
Eq. (6)], but its extension to RR is straightforward: one
simply needs to interchange a$ b and A$ B.
Importantly, this bound can easily be computed from the
observed data since one simply needs to calculate the
entropy of thermal states. As an illustration, Fig. 4 shows
the security range of Gaussian-modulation protocols
against Gaussian collective attacks.

Coherent attacks.—They represent the most powerful
class of attacks Eve can perform: she let all the signal
pulses sent by Alice interact with a large auxiliary system
(quantum computer), which she measures jointly at the end
of the classical postprocessing. Recently, it has been shown
that, for discrete-variable QKD and under some symme-
tries of the classical postprocessing, collective attacks are
actually as efficient for Eve as coherent attacks [8,9].
Taking for granted that this result extends to CV-QKD,
we conjecture that our optimality proof of Gaussian attacks
holds in full generality.
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FIG. 3 (color online). Invariance under local Gaussification
unitaries: UG can be interchanged with the measurement UA;
then U�1

G and UG cancel each other.
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Realistic implementations of CV-QKD.—They never
achieve the secret key rate K��AB� because reconciliation
protocols are not 100% efficient. The actual key rate is

 K � �S�a:b� � S�a:E�

� S�ajE� � �S�ajb� � �1� ��S�a�; (11)

where � 2 �0; 1� is the reconciliation efficiency. It is easy
to prove that Eq. (11) also satisfies the three conditions of
the extremality theorem, so our conclusions remain un-
changed. In the special case of � � 0, this means that
Eve’s accessible information �aE � S�a:E� is maximized
for Gaussian states, so that Gaussian collective attacks are
also optimal in this restricted sense.

‘‘Quantum’’ Bob.—A theoretically interesting, though
probably unrealistic, situation is the case where Bob
reaches the Holevo bound �aB. This may be done by
combining the use of quantum memory with a proper
optimal postprocessing at Bob’s side. The ‘‘ultimate’’
available secret key rate then reads

 K � S�a:B� � S�a:E� � S�ajE� � S�ajB�: (12)

It again satisfies the three above conditions, so it is lower
bounded by the Gaussian attack.

Conclusion.—We have presented a unified analysis of
all known QKD protocols based on Gaussian modulation
of coherent (or squeezed) states by Alice and homodyne
(or heterodyne) detection by Bob, for the DR and RR
versions of one-way reconciliation. The entanglement-
based model of CV-QKD combined with a physical repre-
sentation of measurement gives a very simple way of
writing the secret key rates in terms of mutual
von Neumann entropies involving quantum systems (in-
cluding the preparer and the measurer). Then, exploiting a

recent result on the extremality of Gaussian states, we have
demonstrated that the optimal collective attack against all
these protocols is a Gaussian operation. It is then sufficient
to check the security against Gaussian attacks, which are
completely characterized by the covariance matrix �AB
estimated by Alice and Bob. This result appears to be quite
general as it holds for realistic protocols (with finite rec-
onciliation efficiency) as well as for ideal protocols (where
Bob has a quantum memory and extracts the entire acces-
sible information). Provided that [8,9] can be adapted to
CV, which is a topic for further investigation, our proof
would extend to the full unconditional security of CV-QKD
against coherent attacks.
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Note added.—The optimality of Gaussian collective
attacks has been independently proved using different
techniques in [17].
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FIG. 4. Tolerable excess noise � as a function of the channel
transmission T at the limit of an infinite modulation for the four
Gaussian protocols: squeezed states and homodyne measure-
ment (solid line; see also [12]), squeezed states and heterodyne
measurement (dashed line), coherent states and homodyne mea-
surement (dotted line; see also [12]), and coherent states and
heterodyne measurement (dot-dashed line). The curves vanish-
ing at (or above) T � 0:5 correspond to DR, whereas those
vanishing at T � 0 refer to RR.
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