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Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and
recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein
condensates is proposed whose accuracy might reach down to the level of a few or even single phonons.
This scheme could open up a new range of applications including the experimental observation of
quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic
analogue of cosmological particle creation.
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Gaseous atomic or molecular Bose-Einstein condensates
[1] are in several ways superior to other superfluids: apart
from a very good theoretical understanding via the mean-
field formalism (in the dilute-gas limit), they offer unpre-
cedented options for experimental manipulation and con-
trol. It is possible to influence the shape, density, flow
profile, and coupling strength of Bose-Einstein conden-
sates via external electromagnetic fields. Finally, these
condensed gases are rather robust against the impact of
the environment such that one may reach extremely low
temperatures.

In view of all these advantages, the question naturally
arises whether it could be possible to measure so far
unobserved quantum radiation phenomena in a suitable
setup. These exotic quantum effects include cosmological
particle creation (due to the amplification of quantum
fluctuations in an expanding or contracting universe
[2,3] ) as well as the acoustic analogue of Hawking radia-
tion [4,5] in ‘‘dumb holes’’ [3,6,7].

For wavelengths which are much longer than the healing
length �, the propagation of phonons in Bose-Einstein
condensates is analogous to a scalar field in a curved
space-time described by the effective metric [6]

 g��eff �
1

%0cs

1 v0

v0 v0 � v0 � c
2
s1

� �
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which is determined by the density %0 and velocity v0 of
the background fluid. For example, assuming an effectively
one-dimensional stationary flow, the point where the fluid
velocity v0 exceeds the local speed of sound cs corre-
sponds to the sonic analogue of the horizon of a black
hole. The corresponding Hawking temperature is deter-
mined by the velocity gradient [6]

 THawking �
@

2�kB

�������� @@r �v0 � cs�
��������; (2)

i.e., the characteristic length scale � over which the flow
changes. Since this length scale should be large compared
to the healing length � (typically of order micrometer) for
the curved space-time analogy to apply, a speed of sound of
order mm=s leads to an upper bound for the typical energy

of the Hawking phonons of order 10�13 eV corresponding
to a temperature on the nano-Kelvin level.

Moreover, since the fluid velocity equals the sound
speed at the acoustic horizon, only a limited number of
these low-energy phonons will be created by the Hawking
effect—unless one has a very large reservoir for the con-
densate flow: Since the Hawking radiation is thermal, the
typical distance between two emitted Hawking phonons is
given by their characteristic wavelength � and hence it is
much larger than the healing length �. In addition, Bose-
Einstein condensates are formed by atoms (or molecules)
whose interparticle distance ad is far bigger than the
s-wave scattering length as (dilute-gas limit). As a result,
a healing length � / ad

�������������
ad=as

p
typically contains many

atoms �� ad; i.e., we have a hierarchy of length scales
�� �� ad � as. Consequently, the number of
Hawking phonons is extremely small compared to the
number of atoms in the condensate ad=��� 1.

Similar arguments apply to the analogue of cosmologi-
cal particle creation, which require a nonstationary setup.
Considering the effective metric in Eq. (1), there are basi-
cally two possibilities for simulating the cosmic expansion
in Bose-Einstein condensates: an expansion of the conden-
sate or a temporal variation of the speed of sound (which
can be achieved via varying as by means of a Feshbach
resonance, for example). For simplicity, we shall focus on
the second possibility in the following, but the general
ideas apply to both scenarios. The typical wavelength �
of the created phonons is determined by the rate of change
� � O�c2

s= _cs� of cs and should again be large compared to
the healing length � for the curved space-time analogy to
apply. In the absence of amplification mechanisms such as
resonances, the typical number of created phonons per
wavelength is again of order one [5].

For a small number of phonons with an energy of order
10�13 eV, the usual detection mechanisms for sound (such
as Bragg spectroscopy [8] or time-of-flight imaging [9] )
are extremely difficult to apply: the recoil of a single
(optical) photon is sufficient to ‘‘kick out’’ one atom/
phonon and the kinetic energy of a single atom with a
velocity of a few mm=s already exceeds 10�13 eV.
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Usually, these measurements involve many atoms/phonons
(limit of classical waves). For example, it is possible to
excite phonon modes via light scattering [8] and to map out
the Bogoliubov coefficients and the dispersion relation,
etc. An indirect observation of the phonon number was
achieved in ultrasensitive temperature measurements [9].

Fortunately, an alternative detection mechanism may
circumvent these obstacles. For example, the ion-trap
quantum computer in [10] is based on optically induced
transitions which require the simultaneous absorption of a
phonon in a given mode (due to the detuning of the laser).
Using the occurrence of the transition as an indicator for
the existence of the phonon yields an energy amplification
over many orders of magnitude. If the phonon-assisted
transition mediates between (meta)stable atomic states
which can be separated or addressed individually, the
problem of detecting a few phonons transforms into the
task of counting atoms, which can be achieved using many
photons [11–13].

In the following, a scheme for the transformation of low-
energy phonons in a given mode into an equal number of
atoms in a different atomic state with controlled energy and
momentum based on doubly detuned Raman transitions is
presented. Let us consider atoms which can be described
by a three-level (�) system consisting of two (meta)stable
states �1 and �2 together with a third excited level �3

with the energies !1 <!2 <!3. This three-level system
is illuminated by two optical laser beams which consist of
many photons and can therefore be treated as rapidly
oscillating classical fields described by the effective Rabi
frequencies �1�t� and �2�t�. Within the rotating wave and
dipole approximation, the Hamiltonian reads (@ � 1
throughout)
 

H � !1j�
2
1j �!2j�

2
2j �!3j�

2
3j

� 	�1�t��
1�3 ��2�t��
2�3 � H:c:�: (3)

The frequencies of the two doubly detuned laser beams are
chosen according to (see Fig. 1)

 �1�t� � �1 expfi�!3 �!1 � ��tg;

�2�t� � �2 expfi�!3 �!2 � �� ��tg;
(4)

with a large detuning � and a small detuning � (which will
later determine the phonon energy). Standard manipula-
tions [14] yield the effective Hamiltonian

 Heff �
j�2

1jj 
2
1j � j�

2
2jj 

2
2j � 	�1�
2e

�i�t 
1 2 � H:c:�
�

:

(5)

Assuming j�1j � j�2j � �, both levels acquire the same
additional shift �2=�; otherwise we would obtain an
effective detuning �! �0 shifted by �j�2

1j � j�
2
2j�=�.

An ideal quantum gas containing many of these atoms
with mass m can be described by the many-particle field
operator  ̂r with the dynamics (Heisenberg picture)

 i
@
@t
 ̂r �

�
�
r 2

2m
� Vr

�
 ̂r ��rs ̂s; (6)

where r, s � 1, 2 are labels for the remaining two levels
and Vr the corresponding potentials. The anti-Hermitian
space-time dependent transition amplitude �12�t; x� �
expf�i�t� i� � rg�2=� represents the mode coupling in
Eq. (5), where � arises from a small angle between the
Raman beams and the resulting wave number mismatch
� � kLaser

1 � kLaser
2 .

An expansion into single-particle energy eigenstates

  ̂ s�t; r� �
X
�

âs��t�fs��r� expf�iEs�tg; (7)

diagonalizes Eq. (6) apart from the transitions, which are
(in the rotating wave approximation) only relevant for
E1;� � E2;� � � (energy conservation) and if the spatial

matrix element hf1�j�̂12jf2�i is large enough. For nearly
homogeneous potentials Vr const, the eigenfunctions are
plane waves �! k with Er;k � k

2
r=�2m� � Vr and the

latter condition represents momentum conservation � �
k1 � k2. Hence, for a given frequency and wave number
mismatch of the lasers (�, �), these energy and momentum
conservation conditions determine k1 and k2 up to a con-
tribution perpendicular to �. For effectively one-
dimensional condensates, therefore, we can address single
modes k1 � k1ex and k2 � k2ex by adjusting the lasers.

Now let us consider the following gedanken experiment:
initially all atoms are in the state r � 1 and form a nearly
homogeneous and (quasi-)one-dimensional condensate,
which is not in its ground state but contains a single phonon
with a given wave number kp�kpex. In contrast to Eq. (6),
this requires a nonvanishing coupling g. However, if we
switch off this interaction g adiabatically (e.g., via a
Feshbach resonance), the system stays in this first excited
state and finally contains a single atom with the momentum
kp of the original phonon. After applying a Raman � pulse
(with the duration T � ��=�2) adapted to this wave
number, e.g., 	 � kp and � � k2

p=�2m� � V1 � V2, ex-
actly this single atom will be transferred to the other state

ω
3

ω2

ω1

Ω1 Ω2

∆

δ

FIG. 1. Sketch (not to scale) of the three-level (�) system and
the doubly detuned Raman transitions denoted by �1;2.
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r � 2, while all the condensate atoms are not affected
(assuming that rotating wave approximation applies).

If we can separate the two species r � 1 and r � 2 or
address them individually, the number of atoms in the state
r � 2 can be counted via fluorescence measurements [11–
13] and yields (in the ideal case) the number of phonons in
a given mode kp present initially, i.e., one. For example, a
beam with a frequency just between the resonances of the
two species r � 1 and r � 2 is repulsive for one compo-
nent and attractive for the other one and could be used as
optical tweezers.

With fixed momentum kp (homogeneous condensate),
the energy gap between the ground state and the one-
particle excited state decreases with diminishing coupling
g in view of the Bogoliubov dispersion relation !2�k� �
g%k2=m� k4=�2m�2. Hence, let us study the application
of the Raman transitions in the presence of a nonvanishing
coupling g (respecting the altered dispersion relation).
With interactions, the field operator  ̂r of the two levels
r � 1, 2 obeys the equation of motion

 i
@
@t
 ̂r �

�
�
r2

2m
� Vr � grs ̂

y
s  ̂s

�
 ̂r ��rs ̂s: (8)

For simplicity, we assume equal one-particle trapping po-
tentials V1 � V2 � V and coupling constants g11 � g22 �
g12 � g21 � g for the two species (otherwise we would
again obtain an effective detuning �! �0). Initially, all the
atoms (and hence also the condensate) are in the state r �
1, which facilitates the mean-field expansion

  ̂ r �
 ̂1

 ̂2

 !
�

 c � 
̂
�̂

� �
Â����
N
p �O�1=

����
N
p
�; (9)

with the condensate wave function  c and the one-particle
excitations 
̂ and �̂ . The operator N̂ � ÂyÂ counts the
total number of particles.

In complete analogy to the previous example, the con-
densate  c is not affected by the Raman transitions for � >
0 (assuming that the rotating wave approximation applies)
and hence the dynamics of the excitations read

 i
@�̂
@t
�

�
�
r2

2m
� V � gj 2

cj

�
�̂ ��

̂; (10)

with � � �12 � expf�i�t� i� � rg�2=� as before.
Assuming a nearly homogeneous condensate with V �
gj 2

cj � � � const, a normal mode expansion yields

 i
@
@t
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�
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2m
��

�
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�2

�
ei�t
̂k: (11)

The atomic one-particle excitation operator 
̂k can be
decomposed into phonon creation and annihilation opera-
tors âyk and âk, respectively (m � 1 for brevity)

 
̂ k � e�i�t
���������
k2

2!k

s ��
1

2
�
!k
k2

�
âyk �

�
1

2
�
!k
k2

�
âk

�
: (12)

Inserting the time dependences �̂k�t� � �̂ke�i	��k
2=�2m��t

and âk�t� � âke
�i!kt as well as applying the rotating

wave approximation, only the second term survives

i@�̂k��=@t � âk
����������������
k2=2!k

p
�1=2�!k=k2��2=� and we

obtain the expected resonance condition

 � � !k �
�k� ��2

2m
; (13)

which implies energy conservation. Of course, for �2,
k2 � 1=�2, we reproduce the previous result (5). Far
below the healing length �2, k2 � 1=�2 � mg%, i.e., in
the phonon regime, Eq. (13) simplifies to � � !k and we
get i@�̂k��=@t �

����������
�=�

p
âk�2=�. Note that the prefactor����������

�=�
p

is a consequence of the interactions and illustrates
the difference between phonons (‘‘dressed’’ atoms) and
free-particle excitations as in Eq. (5).

The effective interaction Hamiltonian,

 Ĥ int �
�2

�

���������
k2

2!k

s �
1

2
�
!k
k2

�
��̂yk��âk � �̂k��â

y
k �; (14)

has the following intuitive interpretation: because of the
detuning of the Raman beams, the missing energy � pro-
hibits transitions from the multiparticle ground state of the
condensate (which has a sharp and well-defined energy) in
component r � 1 to the other level r � 2 and must be
compensated by absorbing a phonon with this (for k �
��) or an even higher energy !k � �.

If there are n phonons to annihilate (âk), n atoms can be
transferred to the r � 2 state (�̂yk��) such that the final
number of these transferred atoms measures the initial
number of phonons. Vice versa, if the component 2 is not
empty initially, the Raman beams transfer atoms (�̂k��)
from the state 2 to the level 1 with simultaneous emission
of an equal number of phonons (âyk ).

The energy-momentum balance (13) is a bit more com-
plicated than in the previous case without interactions, but
exhibits a similar direction degeneracy, which can again be
eliminated by considering effectively one-dimensional
condensates. In the phonon limit (�� � and �� �),
we obtain a unique solution for the phonon energy !k 
� which allows us to address single modes with suitably
tuned lasers. If we choose � and � to lie on the phonon
dispersion curve � � !���, we annihilate one phonon with
energy � and momentum � and create one particle in the
component r � 2 in the ground state.

With sufficiently long pulses leading to a good energy
resolution, it should be possible to ‘‘see’’ the discrete
nature of the phonon spectrum, i.e., to address single (or
a few) phonon modes. In order to annihilate all phonons in
the r � 1 condensate with a given energy or momentum
and to transfer the same number of atoms to the r � 2
component, we apply an effective Raman � pulse with the
duration [cf. Eq. (14)]

 T �
��

�2

���������
2!k
k2

s �
1

2
�
!k
k2

�
�1

��

�2

����
�
�

s
; (15)

where the  sign applies to the phonon limit.
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Of course, the approximations used in the presented
derivations must be checked for a potentially realistic set
of experimental parameters. Let us assume a speed of
sound of a few millimeters per second and a healing length
around 1 �m. In this case, the wavelength � of the pho-
nons to be detected would typically be several micrometers
1=	 � O�10 �m� and their frequency a few hundred
Hertz � � O�100 Hz�. Using lasers in the optical range
O�1015 Hz�, the large detuning � depends on the atomic
level structure and would be a little bit below this value,
say � � O�1013 � 1014 Hz�. With quite moderate Rabi
frequencies � � O�104 � 107 Hz�, we can achieve an
effective Raman transition rate

����������
�=�

p
�2=� of a few tens

of Hertz. Consequently, the duration of the effective
Raman � pulse in Eq. (15) would be of the order of
hundred milliseconds T � O�100 ms� leading to a energy
resolution of circa ten Hertz. In view of the aforementioned
parameters, the assumptions and approximations (e.g., the
adiabaticity �� �) used in the derivation are reasonably
well justified. The major constraint is given by the energy
resolution of the effective Raman � pulse peaked around
� � O�100 Hz� �O�10 Hz�. Apart from a few excita-
tions (i.e., phonons), the beams illuminate many atoms in
the ground state (zero energy) and one has to make sure
that the probability of transferring an atom from the ground
state of the condensate in component r � 1 into the state
r � 2 is small enough. Thus the negative-frequency tail of
the Fourier transform of the pulse (which is peaked around
� in frequency space) must be suppressed accordingly
[12,15]. A similar restriction applies to the width of the
phonon’s energy, i.e., the phonons must live long enough
(without experiencing decoherence such as damping due to
collisions with the thermal cloud, for example) to be
detected. Fortunately, for sufficiently low temperatures
(nano-Kelvin level), their typical lifetime (e.g., for sodium)
is much longer than 100 ms, cf. [16].

With the ability of measuring a few low-energy phonons,
it might become possible to observe some of the exotic
quantum effects mentioned in the Introduction. The ana-
logue of cosmological particle production is probably eas-
ier to realize experimentally than Hawking radiation since
it can be done with a condensate at rest and a practically
unlimited measurement time. The same advantage applies
to a small wiggling stirrer in the condensate, which would
act as a pointlike noninertial scatterer and generate the
analogue of moving-mirror radiation [5]. In contrast, the
detection of the Hawking radiation requires either a flow-
ing condensate or a motion of the horizon via a space-time
dependent sound velocity cs�t; x� cf. [17]. Apart from
measuring this striking effect, these experiments may
also shed light onto the trans-Planckian problem, i.e.,
impact of the short-range physics on the long-wavelength
Hawking radiation: even though the Hawking effect seems
to be quite robust against modifications of the dispersion

relation at short wavelengths (see, e.g., [18] ), only very
little is known about the impact of interactions.

The idea for the presented detection scheme was devel-
oped together with Mark Raizen [12] and emerged during
the workshop ‘‘Low Dimensional Systems in Quantum
Optics’’ at the Centro Internacional de Ciencias in
Cuernavaca (Mexico), which was supported by the
Alexander von Humboldt Foundation. This work was sup-
ported by the Emmy-Noether Programme of the German
Research Foundation (DFG) under Grant No. SCHU 1557/
1-2. Further support by the ESF-COSLAB and the EU-
ULTI programmes is also gratefully acknowledged.
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