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We study the Loschmidt echo for a system of electrons interacting through mean-field Coulomb forces.
The electron gas is modeled by a self-consistent set of hydrodynamic equations. It is observed that the
quantum fidelity drops abruptly after a time that is proportional to the logarithm of the perturbation
amplitude. The fidelity drop is related to the breakdown of the symmetry properties of the wave function.
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Introduction.—In a famous controversy with Boltz-
mann, Loschmidt pointed out that, if one reverses the
velocities of all particles in a physical system, the latter
would evolve back to its initial state, thus violating the
second law of thermodynamics. The main objection to this
argument is that velocity reversal is a very unstable opera-
tion and tiny errors in the reversal quickly restore normal
entropy increase.

More recently, the original idea of Loschmidt was re-
vived in the context of quantum information theory.
Indeed, any attempt at coding information using quantum
bits is prone to failure if a small coupling to an uncontrol-
lable environment destroys the unitary evolution of the
wave function (decoherence) [1]. In order to estimate the
robustness of the system against perturbations from the
environment, the following procedure has been suggested.
The system is allowed to evolve under the action of an
unperturbed Hamiltonian until time T; then it is evolved
backwards in time until 2T with the original Hamiltonian
plus a small perturbation (the ‘‘environment’’). The square
of the scalar product of the initial and final states defines
the quantum fidelity of the system (Loschmidt echo) and
has been the object of intense study in recent years. Jalabert
and Pastawski [2] have proven that, for perturbations that
are classically weak but quantum-mechanically strong, the
fidelity decay rate depends only on the classical Lyapunov
exponent of the unperturbed system. This universal behav-
ior was later corroborated by numerical simulations [3,4]
and experiments [5]. For weaker perturbations, the decay
rate is still exponential but perturbation dependent (Fermi
golden rule regime). For still weaker perturbations, the
decay is Gaussian [3].

An equivalent approach to the Loschmidt echo was
proposed earlier by Peres [6]. In order to study the sepa-
ration of classical trajectories, it is customary to com-
pare the evolution of two slightly different initial condi-
tions. Peres noted that one could just as well compare the
same initial condition evolving in two slightly different
Hamiltonians, an unperturbed one H0 and a perturbed one
H � H0 � �H. The fidelity at time t is then defined as the
square of the scalar product of the wave functions evolving
withH0 andH, respectively: F�t� � jh H0

�t�j H�t�ij2. The

latter approach is the one adopted throughout the present
Letter.

Virtually all theoretical investigations of the Loschmidt
echo consider one-particle systems evolving in a given
(usually chaotic) Hamiltonian. The aim of the present
work is to explore the more realistic case of a system of
many interacting particles, particularly electrons. In order
to obtain a tractable model, we shall assume that the
electrons interact via the electrostatic mean field, their
dynamics being described by a set of one-dimensional
(1D) hydrodynamic equations. As many experimental
studies on quantum information involve the manipulation
of charged particles, our approach may shed some light on
the robustness of such systems against perturbations from
the environment.

Model.—The physical properties of our model are best
illustrated by considering its classical counterpart, the so-
called ‘‘cold plasma’’ model [7,8]. In the latter, the electron
population is described by a phase-space distribution func-
tion of the following type: f�x; v; t� � n�x; t���v�
u�x; t��, where n and u are, respectively, the electron den-
sity and average velocity, and � denotes the Dirac delta
function. The support of such a distribution function in the
2D phase space (x, v) is a 1D curve defined by the relation
v � u�x; t�. The electron distribution evolves according to
the (collisionless) Vlasov equation. The ions are motion-
less with uniform equilibrium density n0, and periodic
boundary conditions (with �L=2 � x � L=2) are as-
sumed for all variables.

As long as there is no particle overtaking in the phase
space, each position x corresponds to a well-defined ve-
locity u�x; t�. In this case, the Vlasov equation can be
reduced to a closed set of pressureless hydrodynamic
equations:
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where �e an m are, respectively, the electron charge and
mass, and��x; t� is the electric potential obeying Poisson’s
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When particles overtake each other, the function x! u�x�
becomes multivalued. The above hydrodynamic descrip-
tion then breaks down, although the microscopic Vlasov
model remains valid.

A trivial stationary solution of Eqs. (1) and (2) is given
by n � n0, u � 0. The electron dynamics can be excited
by modulating the initial velocity: u�x; t � 0�� �
V0 cos�k0x�, with k0 � 2�=L, which is equivalent to ap-
plying an instantaneous electric field at time t � 0. The
classical dynamics is determined by a single dimension-
less parameter, namely, the normalized wave number of
the initial perturbation K0 � k0V0=!p, where !p �

�e2n0=m"0�
1=2 is the electron plasma frequency. Note

that K0 can be viewed as the ratio of kinetic to potential
(electric) energy. It can be shown that two different re-
gimes exist. WhenK0 < 1, electric repulsion dominates, so
that the electrons never overtake each other in the phase
space. In this case, the hydrodynamic equations (1) and (2)
can be solved analytically and the solution displays non-
linear oscillations at the plasma frequency. When K0 > 1,
the analytical solution breaks down and the dynamics must
be described by the microscopic Vlasov equation. In the
extreme case K0 � 1, the dynamics becomes again inte-
grable, because it reduces to that of free-streaming elec-
trons. For moderate values of K0 (but still larger than
unity), the electrons can be alternately free streaming and
trapped by the self-consistent (SC) potential. This regime
corresponds to the formation of complex vortices in the
phase space and leads to a chaotic dynamics, as was
pointed out for the similar scenario of nonlinear Landau
damping [9]. In this work, we are mainly interested in the
chaotic regime and use the value K0 � 2.

Quantum corrections to the hydrodynamic equations (1)
and (2) were previously derived [10]. For fermions at zero
temperature (a case that is relevant to electrons in metals),
the momentum conservation Eq. (2) should be modified as
follows:
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The second term on the right-hand side is the Bohm
potential: this is a dispersive term that prevents the break-
down of the quantum hydrodynamics even when K0 > 1
[8]. The third term is the Fermi pressure, which in one
dimension can be written as PF=P0 � �n=n0�

3, where the
equilibrium pressure is given by the usual formula, P0 �
2
5 n0EF. EF is the Fermi energy computed with the equilib-
rium density.

The continuity equation (1) and the quantum momentum
equation (4) can be written in the form of a single nonlinear
Schrödinger equation by introducing the effective wave

function ��x; t� �
�������������
n�x; t�

p
exp�iS�x; t�=@	, where S�x; t�

is defined according to the relation mu � @xS, and n �
j�j2. The wave function � obeys the equation
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Equation (5) with Poisson’s equation (3) constitute the
mathematical model used throughout this Letter. The equi-
librium Hamiltonian H0 is time dependent, as it depends
self-consistently on the wave function but conserves both
the total mass and the total energy. The initial condition is
analog to the classical one described in the preceding
paragraphs and can be easily derived from the velocity
perturbation u�x; t � 0�� by using the relation between S
and u. Two more dimensionless parameters (in addition to
K0) intervene in the quantum model: (i) the normalized
Planck constant h � @!p=mV2

0 , which measures the im-
portance of quantum effects, and (ii) the normalized Fermi
velocity vF=V0. The latter affects the results very little
(provided it is not too large), and will be fixed at vF=V0 �
0:1 in the forthcoming simulations.

The numerical solution of Eq. (5) is obtained through a
splitting scheme that separates the kinetic and potential
parts of the Hamiltonian. Derivatives are computed with
centered differences. The resulting algorithm is second-
order accurate both in space and time.

Results.—First, we characterize the spectral properties
of the unperturbed Hamiltonian. We consider a case with
K0 � 2 and h � 0:05 and plot in Fig. 1 the frequency
spectrum of the time history of the electrostatic energy.
The spectrum is broad and virtually flat in the range 0<
! & 3!p. The dynamics is therefore sufficiently irregular
to enable us to compare our results to those obtained for a
single-particle chaotic Hamiltonian.

In order to study the behavior of the quantum fidelity, we
need to compare the evolution of � obtained with the
unperturbed and perturbed Hamiltonians. We use a static
perturbation consisting of a sum of a large number of

 

FIG. 1. Frequency spectrum of the potential energy, for an
unperturbed evolution with K0 � 2 and h � 0:05.
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uncorrelated waves: �H�x�=mV2
0 � �

PNmax
j�Nmin

cos�kjx�
�j�, where � is the amplitude of the perturbation, kj �
j�2�=L�, and the �j are random phases. The wave number
spectrum of the perturbation (i.e., the values of Nmin and
Nmax) affect only very weakly the behavior of the fidelity:
therefore, we will focus our analysis on the dependence of
the fidelity on the amplitude �.

A typical result for the quantum fidelity is presented in
Fig. 2. Contrarily to most single-particle cases, the fidelity
does not decay exponentially. Instead, it remains equal to
unity until a critical time �c, after which it decays abruptly
within a few units of!�1

p . This behavior is generic and was
observed for all set of parameters that were studied, pro-
vided the dynamics is sufficiently irregular. Numerical
tests showed that the value of the critical time is indepen-
dent of the time step. However, as the underlying dynamics
is chaotic, evolutions computed using different time steps
will inevitably diverge for long times. Therefore, the de-
tails of the evolution for t� �c are not quantitatively
meaningful, and simply indicate that the fidelity has
dropped to very small values.

The observed drop in the quantum fidelity is related to a
sudden symmetry breaking of the wave function. Indeed,
the evolution equations (3)–(5) for the unperturbed
Hamiltonian are invariant under the transformation x!
�x. If the initial condition is an even function of x, this
symmetry is thus preserved in time, i.e., ��x; t� �
���x; t�, 8 t. But the perturbation �H possesses no par-
ticular symmetry, and one would expect that the symmetry
of the initial state quickly deteriorates. The symmetry
properties can be conveniently measured by the following
quantity:

 ��t� �
2

n0L

��������
Z L=2

0
��x; t��?��x; t�dx

��������
2
; (6)

which is equal to unity when ��x; t� � ���x; t�. The
evolution of ��t� for the perturbed Hamiltonian is plotted
in Fig. 3. The drop of the quantum fidelity happens vir-
tually at the same time as the breaking of the wave function
symmetry. This behavior is also generic across a wide
range of parameters.

We further investigated the dependence of the critical
time �c on the perturbation amplitude �, for various values
of the normalized Planck constant h. The critical time is
defined as the time at which the fidelity has dropped to 10%
of its maximum value, i.e., F��c� � 0:1. Figure 4 shows
that, for small values of h, �c depends logarithmically on
the perturbation amplitude, i.e., �c 
�t0 ln�, with !pt0 ’
4:3 (this is the straight line depicted in Fig. 4). This
logarithmic dependence appears to be universal (both in
slope and absolute value), at least for the values of K0 and
vF=V0 adopted in these runs. For larger values of Planck’s
constant (h * 0:2), this behavior is less neat, particularly
for small perturbations.

A similar pattern was observed for a chaotic quantum
map [11]: in that case, the fidelity stays equal to unity until
a critical time, after which it starts to decay exponentially
at the classical Lyapunov rate. No sudden drop was ob-
served, as is the case for our simulations.

In order to better evaluate the impact of the SC field, we
performed some simulations where all nonlinear terms
have been suppressed in Eqs. (3)–(5). The first nonlinearity
comes from the Fermi pressure and can be removed simply
by setting EF � 0. The SC nonlinearity comes from the

 

FIG. 2. Fidelity decay for K0 � 2, h � 0:05, and perturbation
� � 10�9.

 

FIG. 3. Evolution of the symmetry ��t� for the same case as in
Fig. 2.

 

FIG. 4. Critical time �c (in units of !�1
p ) versus perturbation

amplitude �, for h � 0:05 (stars), h � 0:025 (diamonds), and
h � 0:0125 (triangles). The solid line represents the curve �c 

�t0 ln�, with !pt0 � 4:3.
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fact that the electric potential depends on the wave function
through the electron density n � j�j2. To remove this
nonlinearity, we define the electron density independently
of �, as the sum of traveling plane waves: n � next �

n0�1� �
P25
j�1 k

2
j cos�kjx�!pt� �0j�	, where � is the

amplitude of the density fluctuations, and the �0j are ran-
dom phases. This definition is plugged into Poisson’s
equation to yield the electric potential. As the resonances
of the plane waves overlap in phase space, the resulting
(time-dependent) Hamiltonian H0 is likely to display cha-
otic regions [12]. The fidelity decay is studied by perturb-
ing the Hamiltonian in the same way as in the SC case.

In Fig. 5 we plot the quantum fidelity for � � 0:5, h �
0:025, and several values of the perturbation �. The fidelity
decay is exponential and begins at t � 0. The decay rate is
approximately proportional to the square of the perturba-
tion, which shows that we are in the so-called Fermi golden
rule regime [3,11]. However, contrarily to Ref. [11], no
plateau was observed for short times.

Finally, we studied a case where both the SC and the
external fields are present. This is accomplished by defin-
ing the electron density as n�x; t� � next � ��j�j2 � n0�.
By varying � and �, we can move continuously from a
purely ‘‘external’’ regime (� � 0) to a purely SC one (� �
0, � � 1). We concentrate on a case with � � 0:5, h �
0:025, and � � 10�3, and vary the value of � (Fig. 6). For
short times, the fidelity decays exponentially with the same
rate as in the purely external case. Subsequently, the decay
becomes faster, and for large values of�we almost recover
the abrupt drop of Fig. 2.

Discussion.—The present work is a first attempt at
studying quantum fidelity decay in a system of electrons
interacting through their SC electric field. Our numerical
results show that the quantum fidelity can display a rapid
decrease. Such an effect is probably related to the fact that
the unperturbed Hamiltonian H0 depends on the wave

function. When the perturbation �H induces a small
change in �, H0 is itself modified, which in turns affects
�, and so on. Because of such nonlinear loop, the per-
turbed and unperturbed solutions can diverge very fast
(typically, within a few !�1

p ). In contrast, for the single-
particle dynamics, H0 is fixed and the solutions diverge
only because of the small perturbation �H.

In summary, it appears that the ‘‘natural’’ response of a
SC system to a perturbation is a sudden drop of the fidelity
after a quiescent period rather than an exponential decay.
Further studies will be needed to understand whether these
results extend to more complex models, going beyond the
mean-field approach adopted here.
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FIG. 5. Fidelity decay for a purely external Hamiltonian: � �
10�3 (stars); � � 2� 10�3 (triangles); � � 5� 10�4 (dia-
monds). Time is rescaled to the square of the perturbation �.

 

FIG. 6. Fidelity decay for a mixed external and SC
Hamiltonian, for � � 0 (solid line), � � 0:01 (dotted line), � �
0:03 (dashed line), � � 0:1 (dot-dashed line), and � � 0:3 (dot-
dot-dashed line).
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