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We present a general theoretical framework for a hybrid system that is composed of a quantum
subsystem and a classical subsystem. We approach such a system with a simple canonical transformation
which is particularly effective when the quantum subsystem is dynamically much faster than the classical
counterpart, which is commonly the case in hybrid systems. Moreover, this canonical transformation
generates a vector potential which, on one hand, gives rise to the familiar Berry phase in the fast quantum
dynamics and, on the other hand, yields a Lorentz-like geometric force in the slow classical dynamics.
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Single spin detection was recently achieved with
magnetic-resonance-force microscopy [1]. Technically,
this remarkable experiment marks a major step in man’s
ability to control objects at the atomic scale and has great
potential for application in future technology [2]. On the
scientific side, this experiment also invokes many interest-
ing questions of fundamental interest.

We first notice that the system used in the experiment is
a hybrid system composed of a quantum subsystem (single
spin) and a classical subsystem (cantilever). In Refs. [3,4],
both subsystems are treated classically. Although this is
adequate to address specific issues and systems related to
the current experiments [1,5], this method is inadequate to
treat a general hybrid system, for example, when the
quantum subsystem is not a spin or when one tries to
discuss phase-related issues. This kind of hybrid system
was also studied by Berry and Robbins [6]. However, their
formalism is not satisfying, either, as the classical dynam-
ics never appears explicitly in the formalism and it cannot
deal with the situation in which the quantum system is in a
coherent noneigenstate. Then the question is how to treat
adequately a general hybrid system. This question will
grow more important since various techniques are being
developed or explored to control objects at the atomic
scale. These techniques are certainly all based on hybrid
systems where a classical sensor interacts with a quantum
object.

We also notice that, in the experiment of single spin
detection [1], the quantum subsystem (spin) is dynamically
much faster than the classical counterpart (cantilever). In
other words, it is a Born-Oppenheimer-type system (one
subsystem is fast and the other slow). This is, of course,
typical of a hybrid system. Born-Oppenheimer-type sys-
tems have been studied by many in different settings [6–
11]. One general scene in these Born-Oppenheimer-type
systems is that vector potentials related to geometric
phases are found to arise and generate geometric forces
in the slow subsystem. It is then interesting to ask whether
the geometric force can be detected with current experi-
mental techniques in light of this successful single spin

detection [1]. It is also interesting to know how to formu-
late the vector potential and the geometric force when the
quantum subsystem is in a noneigenstate, since there is no
reason to assume that the quantum subsystem is only in an
eigenstate. In previous studies, the quantum subsystem is
always assumed in an eigenstate [6–9].

In this Letter, we present a general theoretical frame-
work for hybrid systems. For this kind of system, we use
the well-known fact [12–14] that a quantum system pos-
sesses mathematically a canonical classical Hamiltonian
structure. In this way, we can describe the hybrid system
with a unified classical Hamiltonian. We emphasize that in
our Hamiltonian the quantum subsystem is reduced only
mathematically to a classical system and no physics is lost.
This is in contrast to the Hamiltonian of Ref. [4], where the
quantum subsystem is reduced physically to be classical
and some physics may be lost.

We try to decipher the complicated dynamics of the
hybrid system with a special canonical transformation.
This transformation is particularly effective when the
quantum subsystem is fast and the classical subsystem is
slow. After the canonical transformation, it becomes clear
that the two subsystems influence each other not only via
interaction but also through a vector potential. This vector
potential generates the familiar Berry phase [15] in the fast
quantum subsystem while it produces a Lorentz-like geo-
metric force in the slow classical subsystem.

We shall use a simple example, the coupling of a heavy
magnetic particle with a single spin, to illustrate our theory.
We also use this example to show how big the geometric
force can be and whether it is detectable with current
experimental techniques.

In addition, we point out that our method can also be
regarded as an alternative way of deriving the Berry phase
[15]. Our method has the advantage that the fast quantum
subsystem need not be in an eigenstate. In other words, the
Berry phase can be defined for a general quantum state.
Our method can also be generalized to derive Hannay’s
angles [16] or the geometric phase proposed in Ref. [17]
for nonlinear quantum systems. In this sense, our approach
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shows that these different geometric phases (Berry phase
and Hannay’s angles) are just different manifestations of
the same mathematical concept in different dynamical
systems.

We describe the aforementioned hybrid coupled system
with the following Hamiltonian:

 H � h�jĤ1�q2�j�i �H2�p2;q2�; (1)

where Ĥ1 is the Hamiltonian operator of the linear N-level
fast quantum subsystem and j�i � ��1;�2; . . . ;�N�

T is
its quantum state. The Hamiltonian H2 governs a heavy
classical subsystem that moves slowly and p2, q2 are its
momenta and coordinates, respectively. The dependence
of Ĥ1 on q2 indicates the coupling between the two
subsystems.

We first focus on the quantum subsystem, assuming
temporarily that q2 are just some fixed parameters. The
Schrödinger equation of the quantum subsystem is
i@dj�i=dt � Ĥ1j�i, which can be rewritten as

 i@
d�j

dt
�

@
@��j

H1��;��;q2�; (2)

where H1 � h�jĤ�q2�j�i. This shows that the quantum
system has a classical Hamiltonian structure. This fact is
known to many people and was discussed in detail in
Refs. [12,13]. To have a more ‘‘classical’’ look for this
quantum system, we define p1j �

�����
i@
p

��j , q1j �
�����
i@
p

�j

and write Eq. (2) in an apparent canonical Hamiltonian
formalism

 

dq1j

dt
�
@ ~H1

@p1j
;

dp1j

dt
� �

@ ~H1

@q1j
; (3)

where ~H1 � ~H1�p1;q1;q2� � H1��;��;q2�. In this way,
we have classically reformulated quantum systems.

The quantum state j�i can be expanded in terms of
instantaneous eigenstates

 j�i �
XN
n�1

anj’n�q2�i; (4)

where Ĥ1�q2�j’n�q2�i � En�q2�j’n�q2�i. The quantum
system can be described alternatively by these expansion
coefficiencies an’s. Define I1n � @janj

2 and �1n �
� arg�an�; one can prove readily that I1 and �1 are another
set of canonical variables for the Hamiltonian H1.
According to the standard classical theory [18], there is a
canonical transformation between p1, q1 and I1, �1, and
this transformation is given by a generating function
F1�q1; I1;q2� that satisfies

 p 1 �
@F1

@q1
; �1 �

@F1

@I1
: (5)

With this transformation, the Hamiltonian H1 becomes
H 1 �H 1�I1;q2� �

P
nEn�q2�I1n=@, independent of the

angles �1.

We go back to the hybrid coupled system, where q2 are
dynamical variables instead of some fixed parameters. The
Hamiltonian for the hybrid system can now be expressed in
a pure classical formalism

 

~H � ~H1�p1;q1;q2� �H2�p2;q2�: (6)

We introduce a canonical transformation from p1, q1, p2,
q2 to I1, �1, P2, Q2 with the following generating func-
tion:

 F � F1�q1; I1;q2� � q2P2: (7)

The canonical transformation is then given by

 p 1 �
@F
@q1
�
@F1

@q1
; �1 �

@F
@I1
�
@F1

@I1
; (8)

 p 2 �
@F
@q2
�
@F1

@q2
� P2; Q2 �

@F
@P2
� q2: (9)

The transformation does two things: (i) Since Eq. (8) is
identical to Eq. (5), the transformation changes p1, q1 to
I1, �1 as if it is generated by F1; (ii) it puts an additional
vector function A � �@F1=@q2 in the momenta p2 while
keeping the coordinates q2 unchanged. After the trans-
formation, the total Hamiltonian in Eq. (6) becomes

 H �H 1�I1;Q2� �H2�P2 �A;Q2�: (10)

In the second subsystem, A appears very much like a
vector potential. However, it is not a true vector potential
since it also depends on variables other than q2. For
convenience, we shall call it a pseudovector potential. As
we shall see, this pseudovector potential can lead to a true
vector potential.

By assuming that the classical subsystem has the usual
Hamiltonian H2 � p2

2=2M� V2�q2�, we write down the
equations of motion for the whole system. For the quantum
part, we have

 

_I 1j � _q2 �
@A
@�1j

; (11)

 

_� 1j �
@H 1

@I1j
� _q2 �

@A
@I1j

: (12)

For the classical part, we obtain

 

_P 2j � �
@H 1

@q2j
�
@V2

@q2j
� _q2 �

@A
@q2j

; (13)

 

_Q 2j � _q2j � �P2j � Aj�=M: (14)

Most of the hybrid systems that we encounter in con-
crete problems are of Born-Oppenheimer type; that is, the
quantum subsystem is much faster than the classical sub-
system. We now apply the general formalism and approach
to this typical type of hybrid systems. In this case, the
classical variables q2 can be considered as the adiabatic
parameters for the quantum subsystem.

PRL 97, 190401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 NOVEMBER 2006

190401-2



We first analyze the pseudovector potential A. To do
this, we make the potential an explicit function of the new
dynamical variables I1, �1, P2, and Q2 (�q2) by defining
a new function

 

~F 1�I1;�1;q2� � F1�q1�I1;�1;q2�; I1;q2�: (15)

This leads to

 Aj � p1
@q1

@q2j
�
@ ~F1

@q2j
� i@h�j

@
@q2j

j�i �
@ ~F1

@q2j
: (16)

Since the variables q2 change very slowly compared to the
dynamics of the quantum subsystem, we are allowed to
apply the standard averaging technique in the study of
adiabatic evolution [16,18]. It also implies that the proba-
bilities I1 are conserved during the evolution according to
the quantum adiabatic theorem [19]. After averaging and
using the quantum adiabatic theorem, the pseudovector
potential becomes

 

�A j �
I d�1

�2��N

�
i@h�j

@
@q2j

j�i �
@ ~F1

@q2j

�

� i
XN
n�1

I1nh’nj
@
@q2j

j’ni �
@ ~F1

@q2j
; (17)

where the overline indicates that the average has been done
for the variable. The function �A is now a true vector
potential as it no longer depends on �1 and at the same
time I1 are constant. After ignoring the trivial gradient
term in Eq. (17), we obtain a true vector potential

 

�A �
XN
n�1

I1nAn; An � ih’nj
@
@q2
j’ni: (18)

Substituting it into Eq. (12), we arrive at

 

_� 1j �
@H 1

@I1j
�Aj � _q2; (19)

where the integration of the last term produces exactly the
Berry phase of the jth eigenstate. One can regard this as a
new way to derive the Berry phase; in this new way, the
quantum system does not need to be in an eigenstate.

For the slow classical subsystem, we take the averaging
over Eq. (13) and rewrite it in a physically more transpar-
ent form

 M ��q2 � �
@H 1

@q2
�
@V2

@q2
� �_q2 �B; (20)

where B � r� �A �
P
nI1nr�An is a magneticlike

gauge field. Similar to the usual magnetic field, the gauge
field influences the dynamics in terms of a Lorentz-like
force. So the Berry phase is shown to be linked to a
physical force. We shall have more discussion with this
force later via an example.

We have applied our method to the cantilever-spin sys-
tem in the single spin detection experiment [1,5] and

recovered the theoretical result in Ref. [4]. The pity is
that, since the cantilever vibrates only in one dimension,
the force associated with �A is always zero. To have a
nonzero B, we consider an example where the classical
subsystem is a magnetic particle and the quantum subsys-
tem is a spin of 1=2 as shown in Fig. 1. The magnetic
particle has a magnetic moment mF and mass m; it moves
freely in the xy plane. We assume that the magnetic mo-
ment mF always points in the negative z direction. A single
spin with magnetic moment � is placed below the plane at
the distance d. For simplicity, we place the origin of our
coordinate system in the particle plane and directly above
the spin.

Because of the magnetic dipolar interaction, the spin
feels a magnetic field from the classical magnetic particle.
The field is given by

 fBx; By; Bzg � �
�0mFf3xd; 3yd; 2d

2 � r2g

4��d2 � r2�5=2
; (21)

where r2 � x2 � y2. So the Hamiltonian operator for the
spin is

 Ĥ 1 � ��
Bz Bx � iBy

Bx � iBy �Bz

� �
: (22)

This Hamiltonian has two eigenstates j	i, whose eigene-

nergies are, respectively,
�B, with B �
�����������������������������
B2
x � B2

y � B2
z

q
.

The total Hamiltonian is

 H � h�jĤ1j�i � p2=2m; (23)

where j�i � ��1;�2�
T is the spin wave function and p is

the momentum of the magnetic particle.
Following the general procedure described above, we

can transform the above Hamiltonian to

 H � �ja�j2 � ja�j2��B�
�P� �A�2

2m
; (24)

where ja	j2 are the probabilities on the two spin eigen-
states j	i, respectively. The vector potential is given by

y

z

x

rO

xy plane

m F

µ(spin)

d

FIG. 1. A schematic setup of a magnetic particle interacting
with a spin. The particle moves freely in the xy plane with a
magnetic moment of mF always pointing in the negative z
direction. A single spin with magnetic moment � is placed
beneath the plane with a distance of d.
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�A � i@ja�j2h�j
@
@r
j�i � i@ja�j2h�j

@
@r
j�i: (25)

The equations of motion for the particle are

 m �x �
3��0mF�5d2 � r2��ja�j2 � ja�j2�

4�
�������������������
4d2 � r2
p

�d2 � r2�3
x�B _y; (26)

 m �y �
3��0mF�5d

2 � r2��ja�j
2 � ja�j

2�

4�
�������������������
4d2 � r2
p

�d2 � r2�3
y�B _x: (27)

The magneticlike B field always points in the z direction.
The field strength is

 B �
9@d2�r2 � 2d2�

2��r2 � d2��r2 � 4d2��3=2
�ja�j

2 � ja�j
2�: (28)

We make two observations. First, the field is geometric,
depending only on the position of the magnetic particle
besides @ and independent of the strength of the dipolar
interaction. Second, it curves motion in an unexpected
way. For instance, if the initial conditions of the slow
particle are x�0� � 0, y�0� � 0, _x�0�> 0, and _y�0� � 0,
then everything in the real space is symmetric with respect
to the inverse of y, including the dipolar force and the spin
direction. One would then expect intuitively that the parti-
cle moves in a straight line along the x direction. However,
the slow particle will curve owing to B, breaking the left-
right symmetry in the real space. What is interesting is that
the force breaking of this real-space symmetry comes from
the dynamics of the spin wave function’s phase, a non-real-
space variable.

To detect such a force experimentally, the best way may
be to measure the frequency associated with this force,
such as the frequency change in the single spin detection
[1]. For the simple system in Fig. 1, if the spin is only an
electron and �< 0, we notice that the slow particle can
move in a circle if ja�j2 < ja�j2. If somehow one can fix
the radius r of the circle, the frequency that the particle
circulates clockwise is different from that when it circu-
lates anticlockwise. Simple calculations show that the
frequency difference is �� � B=2�m. For estimation of
the value of the frequency difference, the following pa-
rameters are used: �0mF  2:0� 10�21 T m3, m 2:5�
10�15 kg, r 1 nm, and d 1000 nm. For these values of
parameters, we obtain, for the case ja�j2 � 0 and ja�j2 �
1, B�1:20� 10�22 kg=s (if it were for an electron, it
would be equivalent to a magnetic field of 7:5� 10�4 T)
and Bz 3:2� 10�4 T. The frequency difference is ��
0:7� 10�8 Hz, which is a challenging task for the current
technique [1]. Moreover, in a real experiment, the magnetic
particle needs to be attached to something such as a string
so that it can oscillate in two dimensions.

A similar vector potential can also arise in connection to
Hannay’s angle [16]. The theoretical framework starting at
Eq. (6) can be readily generalized to the cases where the
fast subsystem is a classical integrable system. In this

generalization, one needs only to regard I1 and �1 as a
set of action-angle variables. Such a coupled system was
also discussed in Ref. [20]. The same extension can be
done for the geometric phase proposed for nonlinear quan-
tum systems [17].

In the general case where the two subsystems are not
necessarily one fast and one slow, one may use the pseu-
dovector potential A to define a ‘‘geometric’’ phase for
nonadiabatic processes. However, this general phase may
be of little use since it does not provide any insight into the
dynamics. We finally note that the quantum-classical hy-
brid system has been studied extensively in the context of
quantum measurement [21].
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