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We suggest a method for estimating the topology of a network based on the dynamical evolution
supported on the network. Our method is robust and can be also applied when disturbances and/or
modeling errors are presented. Several examples with networks of phase oscillators, pulse-coupled
Hindmarch-Rose neurons, and Lorenz oscillators are provided to illustrate our approach.
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Introduction.—The study of complex systems pervades
through almost all the sciences, from cell biology to ecol-
ogy, from computer science to meteorology, to name just a
few. A paradigm of a complex system is a network [1]
where complexity may come from different sources: topo-
logical structure, network evolution, connection and node
diversity, and/or dynamical evolution. The macroscopic
behavior of a network is determined by both the dynamical
rules governing the nodes and the flow occurring along the
links. Real networks of interacting dynamical systems—
be they neurons, power stations, or lasers—are complex.
The research on complex networks has been focused on the
their topological structure as well as on how the topology
properties of the network, such as clustering coefficient,
connectivity distribution, and average network distance,
influence its dynamic behavior [2–7]. For example, the
effects of these properties on synchronization are well
studied in the literature [8–12]. Most networks offer sup-
port for various dynamical processes. In this Letter we
propose a method for determining the topological structure
of a network based on the dynamical evolution supported
on the network. The method is robust, can be applied to
estimate the connection topology of any subnetwork, and
can also be used for ‘‘online monitoring’’ of the dynamic
evolution of the network topology.

Consider a network, which is represented by a graph.
Recall that a graph is an ordered pair of disjoint sets (V, E)
such that E is a subset of the set of unordered pairs of V.
The set V is the set of vertices and E is the set of edges. The
dynamical evolution on the network is given by:

 

_x i � f i�xi� � C
Xn
j�1

aijhj�xj�; (1)

where i � 1; 2; . . . ; n, xi � �xi; yi; zi; . . .�T 2 RN is the
state vector of node i, and f : RN ! RN describes the
node equations. For simplicity only, here we assume that

the first components of each node are connected to each
other (more general case will be treated in another paper).
Thus, hj�xj�: R! R is the output of the node j, and C �
�1; 0; . . . ; 0�T . The topology of the network connections is
determined by the adjacency matrix A � �aij�: aij � 1 if
the node j is connected to the node i, and aij � 0 other-
wise. The Eq. (1) can describe a network of phase oscil-
lators [13], a network of neurons [14], or a network of
chaotic oscillators. As an example of a network of phase
oscillators, we consider a system of n phase oscillators,

 

_� i � !i �
�
n

Xn
j�1

aij sin��j ��i�: (2)

We assume that !i are normally distributed with mean 0
and variance 1. As an example of a network of neurons, we
study a network of pulse-coupled Hindmarch-Rose (HR)
neurons, for which the equation of motion is given by:

 _x i � fi�xi; yi; zi� � k
Xn
j�1

aij�xj � xi� � gs�xi � Vs�

�
Xn
j�1

�ij��xj�;

_yi � dx2
i � yi; _zi � ��bxi � c� zi�

(3)

where fi�x� � ax2
i � x

3
i � yi � zi. The matrix (aij) is the

adjacency matrix describing the electrical coupling, while
the adjacency matrix (�ij) describes the synaptic coupling.
Finally, as an example of a network of chaotic oscillators,
we consider the following array of n nonidentical Lorenz
oscillators:

 _xi � �i�yi � xi� � c
Xn
j�1

aij�xj � xi�;

_yi � �xi � xizi � yi; _zi � xiyi � bzi:

(4)
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Theory.—For simplicity, we consider a network of 1D
oscillators, so the dynamical evolution on the network is
given by:

 _x i � fi�xi� �
X
j2V

aijhj�xj�; (5)

where i 2 V :� f1; 2; . . . ; ng, xi 2 R is the state vector of
node i, and fi: R! R describes the node equations. We
assume that the mappings fi and hi are Lipchitzian for
all i, that is, there exist positive constants L1i and L2i
such that kfi�yi� � fi�xi�k 	 L1ikyi � xik and khi�yi� �
hi�xi�k 	 L2ikyi � xik, for all i.

Assume that the functions fi and hi are known and xi,
for all i, can be experimentally measured (are observable).
Assume further that the topology of the network is un-
known. In this Letter we address a method for finding the
topology of the network connections, more precisely for
estimating the elements of the matrix A � �aij�. In par-
ticular, we show that under some mild mathematical con-
ditions, one can design control signals ui, such that the
system:
 

_yi � fi�yi� �
Xn
j�1

bijhj�yj� ��i�y; bij; t� � ui;

_bij � ��ijhj�yj��yi � xi�;
(6)

where i, j 2 V, and �ij are positives, and can track the
topology of the network. Here y � �y1; . . . ; yn�T and �i
represent the unknown nonlinear functions (such as dis-
turbances and modeling errors). We assume that j �i j	
��y; t�d�t�, where ��y; t� is the known function and d�t� is
unknown but bounded time-varying disturbance. Let ei �
yi � xi. Consider the Lyapunov function 2� �P
ie

2
i �

P
i
P
j�1=�ij��bij � aij�

2. Then, we have
 

_��
Xn

i�1

ei _ei�
Xn
i�1

Xn
j�1

�bij�aij��1=�ij� _bij

�
Xn
i�1

ei

�
fi�yi��fi�xi��

X
j

aij�hj�yj��hj�xj����i

�ui�
X
j

�bij�aij�hj�yj�
�
�
Xn
i�1

Xn
j�1

�bij�aij�hj�yj�ei

�
Xn
i�1

ei

�
fi�yi��fi�xi�

�
X
j

aij�hj�yj��hj�xj����i�ui

�
:

We write L1 � maxiL1i and L2 � maxiL2i and assume
that ui has the form

 ui � �k1ei �
1

4"1
�2ei:

Then, we have

 

_� 	
Xn
i�1

ei

�
L1ei � nL2ei � k1ei ��i �

1

4"1
�2ei

�

	 �k
X
i

e2
i �

X
i

�
j ei j �d�

1

4"1
�2e2

i

�
;

where k � k1 � L1 � nL2 and k1 is chosen such that k >
0. Noting that

 

�
j ei j �d�

1

4"1
�2e2

i

�
� �

�
� j ei j
2
�����
"1
p �

�����
"1
p

d
�

2
� "1d2

and writing " � n"1, we finally have

 

_� 	 �k
X
e2
i �

X
i

�
� j ei j
2
�����
"1
p �

�����
"1
p

d
�

2
� "d2

	 �k
X
e2
i � "d

2:

Therefore, the tracking error exponentially decays and is
ultimately bounded. Since the parameters k and " can be
freely adjusted, transient performance and the final track-
ing accuracy are guaranteed. Therefore, bij 
 aij and the
system (6) tracks the topology of the network (5). We call
Eq. (6) a topology estimator.

Remark 1.—The described method can be applied to any
subnetwork. Indeed, let V1 � V be a subset of the vertex
set. The outlined procedure can also be used to determine
the connections within the subset V1. Assume that for all
j 2 V, xj can be measured. Then for all i 2 V1 we have
 

_yi � fi�yi� �
X
j2V1

bijhj�yj� �
X

j2VnV1

bijhj�yj� � ui;

� fi�yi� �
X
j2V1

bijhj�yj� � �i�y; bij; t� � ui;

and one can apply the above method.
Remark 2.—In the case when the node is a high-

dimensional dynamical system as for the network (1),
one can follow the similar steps as for the 1D case.
However, the full description of the theory in this case is
beyond the scope of the Letter. The network estimator has
the form:
 

_̂xi � fi�x̂i� � C
Xn
j�1

bijhj�x̂j� ��i�x̂; bij; t� � ui;

_bij � ��ijhj�x̂j��x̂i � xi�;

where i; j 2 f1; 2; . . . ; ng, �i represent the unknown non-
linear functions, and �ij are positives. Let ei � x̂� x and

ei � x̂i � xi. Let also ui � u
�1�
i � Cu

�2�
i � Cu

�3�
i . Assume

that one can find a control signal u�1�i such that eTi �fi�x̂i� �
fi�xi� � u

�1�
i � is negative definite for all i, and hi’s are

Lipchitzian, then one can follow the same steps as above
[using u�2�i � �k1ei and u�3�i � �1=�4"��2ei] to show that
the topology of the network (1) can be also estimated with
arbitrary precision.
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Remark 3.—We stress that our method works also when
some nodes are originally in a periodic and others in a
chaotic regime. It also works when all nodes support differ-
ent dynamics or when the network is in the state of partial
synchronization, that is when all nodes are not synchro-
nized; see, for example, [15].

Examples.—We now present several examples. In our
first example, we consider phase oscillators (2). We inves-
tigate standard random symmetric networks, where inde-
pendently for all connections aij � 1 with some
probability and aij � 0 otherwise. In the numerical simu-
lation presented here n � 10 and � � 0:5. Initial condi-
tions for the topology estimator are set to bij�0� � 0:5 for
all i, j. Figure 1 shows the result of the numerical simula-
tion: b1;2 approaches correctly the value a1;2 � 0 and b6;2

tends to the value a6;2 � 1.
In our next example we consider a network of HR

oscillators (3). We assume that the neurons are identical
and the synapses are fast and instantaneous. The parameter
gs is the synaptic coupling strength. The reversal potential
Vs > xi�t� for all xi and all t; i.e., the synapse is excitatory.
We set Vs � 2. The synaptic coupling function is modeled
by the sigmoidal function ��xj� � 1=f1� exp��10�xj �

	s��g, where 	s � �0:25. In the numerical example pre-
sented here: a � 2:8, d � 4:4, c � 5, b � 9, � � 0:001,
gs � 0:34, k � 0:05, and n � 10. Again the topology
estimator correctly estimates the topology of the network,
that is the matrices (aij) and (�ij), as illustrated on the
Fig. 2.

Finally, as a third example, we consider a network of n
nonidentical Lorenz oscillators (4), for which the values of
�i are randomly chosen in the interval [9.2; 9.4], and � �
28, c � 0:1, b � 8=3, and n � 16. For the numerical
simulation presented below, we assume that the values of
the first raw of the adjacency matrix A � �aij� are a1;j � 0
for j � 1, 6, 10, 12, 14, and a1;j � 1 for j � 2, 3, 4, 5, 7, 8,
9, 11, 13, 15, 16. Then the system

 

_̂x i � �i�ŷi � x̂i� � c
Xn
j�1

bij�x̂j � x̂i� � k�xi � x̂i�;

_̂yi � �x̂i � x̂iẑi � ŷi; _̂zi � x̂iŷi � bẑi;

_bij � ��ijc�x̂j � x̂i��x̂i � xi�;

where k and �ij are positives, estimates the elements of the
matrix A, that is, bij ! aij as time goes to infinity. Figure 3
shows the estimation of bij versus time for i � 1: for better
visual presentation, we show bij � j versus time. Note that
b1;5 � 5 and b1;6 � 6 approach 6 indicating correctly that
a1;5 � 1 and a1;6 � 0.

The proposed approach can be applied for online ‘‘moni-
toring’’ of the network topology. This implies that the
dynamic evolution of the topological structure can be
‘‘recorded’’ by the online ‘‘monitor.’’ Assume, for ex-
ample, in the above network of n � 16 nonidentical
Lorenz oscillators, we monitor only the fifth and the 11th
oscillator. We assume that at t � 400 there is an abrupt
change of the network topology: a5;11 � a11;5 � 1 changes
to a5;11 � a11;5 � 0. Figure 4 shows the result of the
numerical simulation of our estimator: b5;11 and also
b11;5 estimate correctly the values of a5;11 and a11;5,
respectively.
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FIG. 1. Topology estimation of a network of n � 10 phase
oscillators: b1;2 and b6;2 vs time.
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FIG. 2. Topology estimation of a network of HR oscillators:
b7;2 and b10;2 vs time.
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FIG. 3. Topology estimation of a network of 16 nonidentical
Lorenz oscillators: b1;j � j vs time, for j � 1; 2; . . . ; 16.
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Finally, we present an example of a topology with
uncertainty. Consider a network of n nonidentical Lorenz
oscillators and assume that we can only measure the var-
iables xi, for i � 1; 2; . . . ; n1. Then the equation for our
topology estimator reads:

 

_̂x i � �i�ŷi � x̂i� � c
Xn1

j�1

bij�x̂j � x̂i� � k�xi � x̂i� � �i;

_̂yi � �x̂i � x̂iẑi � ŷi; _̂zi � x̂iŷi � bẑi;

_bij � ��ijc�x̂j � x̂i��x̂i � xi�;

where i, j 2 f1; 2; . . . ; n1g, �ij are positives, and �i repre-
sent the effects of the influences of the n� n1 oscillators,
that is �i �

Pn
j�n1�1 bijx̂j. Still we can estimate the con-

nection topology of the n1 oscillators. Figure 5 presents the

results of the numerical simulation for the case n � 17 and
n1 � 16: we plot here the values of b1;j � j versus time for
j � 1; 2; . . . ; 16 (assuming that a1;1 � a1;5 � a1;8 � 0 and
a1;j � 1 otherwise).

Conclusions.—In conclusion, we have suggested a
method for estimating the topology of networks. We have
shown that the method can be applied to estimate the
connection topology in any subnetwork. In addition, we
have demonstrated that the approach can be used for online
monitoring the dynamic evolution of the network topology.
Since our method is robust and works well with disturban-
ces and modeling errors, we think that the method can also
be applied to estimate the topology of real (sub)networks.
Our approach can be easily generalized to estimate the
weights of a weighted network.
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FIG. 4. Monitoring the connection between the fifth and the
11th node: b5;11 (b11;5) vs time.
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FIG. 5. Topology estimation with uncertainty: the connection
topology of a subnetwork. b1;j vs time for the subnetwork of 16
oscillators.
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