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Lifshitz-Safran Coarsening Dynamics in a 2D Hexagonal System
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The coarsening process in a two-dimensional hexagonal system in the region close to both spinodal and
order-order transitions was investigated through the Cahn-Hilliard model. We found a distinctive region of
the phase diagram where the pinning of dislocations plays only a minor role and the dynamics is led by the
triple points. In this region, we found configurations of domains with the same features as those proposed
by Lifshitz. As a consequence, different correlation lengths grow logarithmically in time, in good
agreement with the predictions of coarsening at low temperatures proposed by Safran.
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The mechanism of coarsening in a two-dimensional
system undergoing phase separation following a quench
from the high temperature phase to the ordered phase has
been the subject of intense investigations for more than
three decades [1,2]. Except in certain exceptional circum-
stances, it has been clearly shown through numerous stud-
ies that different systems show a coarsening process
satisfying scaling at long times [1]. In this case, the dy-
namics can be characterized by a simple length scale £(r)
that grows in time ¢ as a power law (& ~ ) [1,3]. This
feature has also been observed experimentally in thin films
of block copolymers in the smectic phase [4,5]. In this
case, it was shown that the orientational correlation length
grows in time as &, ~ r'/# and that the dynamics is led by
the annihilation of multipoles of disclinations. On the other
hand, it has recently been found through simulations [6]
and experiments [7] that, in sphere-forming block copoly-
mer thin films, the orientational and translational correla-
tion lengths grow according to different kinetic exponents.
The difference in kinetic exponents has been attributed to a
preferential annihilation of dislocations located along
small angle grain boundaries [6].

In the 1960s, Lifshitz predicted the possibility of for-
mation of a stable lattice of domains on a system with
p-fold degenerate equilibrium states. According to
Lifshitz, this lattice should emerge during the coarsening
process due to the dynamic frustration to reach equilibrium
[8]. Although this grain structure would not minimize the
total free energy of the system, it was shown that it could
be kinetically stable. As a consequence of the relaxation
driven by the curvature of grain boundaries, bounded re-
gions where three grains meet [triple points (TP)] can
become pinned to their positions, slowing down the dy-
namics. Once the system becomes trapped into this dy-
namically stable state, the only path to induce further
coarsening is through fluctuations or driving forces large
enough to unlock the system from the local traps. The first
step to introducing Lifshitz’s ideas in the coarsening pro-
cess quantitatively was made by Safran [9]. It was found
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that the domains grow according to a power law in time for
p <d + 1(d is the spacial dimensionality) but logarithmi-
cally in time in the case p = d + 1.

Although a few systems have been found where the
growth of the correlation length is logarithmic [10], to
the best of our knowledge, there are no systems clearly
verifying the Lifshitz-Safran predictions at present.

The dynamics of phase separation for a diblock copoly-
mer can be described by the following time-dependent
Ginzburg-Landau equation for a conserved order parame-
ter (Cahn-Hillard model) [11]:

W el "

In this equation, the order parameter ¢ is defined in terms
of the local density of each block in the block copolymer,
M is a phenomenological mobility coefficient, and F is the
mean-field free energy functional for a diblock copolymer

[11]:
r= [ae|vw) + 3]
_g ]/ drdrG(r — P)pOPE). ()

Here G(r) is a solution of V2G(r) = —&(r), and U(y) =
=7+ a(l =2/)2ly* + Lvy?® +  Ag*. The parameters
a, v, b, and A are related to the vertex functions derived
by Leibler [12]. The parameter 7 depends linearly on the
Flory-Huggins parameter y and provides a measurement of
the depth of quench. f is the block copolymer asymmetry,
and D is a parameter related to the segment length [11].

Equation (1) leads to spinodal decomposition for 7 >
7, = 2+/bD + a(1 — 2f)?* and to an order-order transition
(hexagonal-smectic transition) for f= f, =1/2 (v =
2VbD).

In this work, we solve Eq. (1) in the region near both the
order-order and spinodal transitions (7 = 7, f < f.) fora
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2D system with hexagonal symmetry containing ~2.5 X
10* disks (see Ref. [6] for details). In Fig. 1, we show
typical pattern configurations at a given depth of quench
(7, = 107%, where 7, = 7/7, — 1) and different coarsen-
ing times. In this figure, we show the results corresponding
to two different values of f, (f, =1 — f/f.). Figures at
the top correspond to f, = 0.03 and at the bottom to a
region closer to the order-order transition (f, = 0.01). By
comparing the figures with different block copolymer
asymmetries, we can observe qualitatively the increase in
the interface thickness as the order-order transition is
approached (f — f.). Note also the presence of hexagonal
cells at grain boundaries. The right panels in Fig. 1 show
color maps of the orientational field for the same images at
the center of this figure. The color key (shown at rightmost
panel of the figure) indicates the orientational field over the
range [0, /3], as appropriate for a sixfold symmetric
structure. Through the color map, regions with similar
orientation can be easily identified. The local orientation
is determined in real space by a Delaunay triangulation [7].
To determine the features of the interface quantitatively,
we employ the model proposed by Goveas and Milner to
study the lamellar-cylindrical transition in weakly segre-
gated diblock copolymer melts [13]. Here we consider a
two parameter family of ordered phases gener-
ated by a linear superposition of two hexagonal patterns
rotated in an angle «. Then we construct an order pa-
rameter: W(r) = (¢p/+/3) S {expliq, -r) + c.c.} + (¢/+/3) X
> {exp(iq, r) +c.c.}. The sets {q;} and {q,} contain the
wave vectors corresponding to the two hexagonal patterns
misoriented by the desired angle. By expanding the free
energy up to fourth order in the above amplitudes, we
found that the local free energy can be expressed as:

FN ___ B + o) 4+ (] —
T [—7+a(l =2/)1(¢ +€D)+3\/§ (1 =2f)

X (P> + @3) + 2A(p* + ¢*) + 61202

Note that this result is independent of the angle . As in the
lamellar-cylindrical case, here we found that close to coex-
istence the free energy can be parametrized with a unique
amplitude along the path of steepest descent and can be
approximated by a symmetric quartic F(¢p) — F(¢pin) ~
[1 — (2¢/Pmin — 1)*]>. The next step takes into consid-
eration the following dynamical equations for the evolution
of the superposed patterns: I' % = — g—’; and I’ ‘fi—f = — ‘;—Z.
Here I is a drag coefficient and the Hamiltonian H con-
tains the free energy cost to create interfaces and the local
term  F(¢, @), ie, H~ [d*Ha3(Ve)*+a3(Ve)> +
F(¢, @)], where a, represents a monomeric length. Using
these equations, it can be shown that at coexistence the
shape of the interfaces presents the usual hyperbolic tan-
gent profiles and that the thickness of the interfaces di-
verges at the critical point as 1/f,. An equivalent result for
the thickness of the interface was found in hexagonal
patterns of a Swift-Hohenberg model for Rayleigh-
Benard convection [14].

As a consequence of the superposition of misoriented
grains, the interface is decorated with hexagonal cells with
sizes which depend on the misorientation. This feature is
clearly observed in Fig. 1(c), where misorientational-
dependent cell sizes are formed. These moiré patterns are
obtained by the linear superposition of two hexagonal
patterns rotated by a certain angle. For grains with a
disorientation «, the cell size must grow as a L,

Through the Delaunay triangulation, it is also possible to
determine the topological defects; in our case, we analyze
the time evolution of translational (dislocations) and ori-
entational (disclinations) defects [7]. In the color maps in
Fig. 1, we have included the topological defects. Since the
disclination charge is strongly modified by the presence of
dislocation lines [15], these defects introduce only small
perturbations in the orientational field.

Similarly to hard crystalline solids, here we found that
grain boundaries are well described as an array of disloca-

FIG. 1 (color online). Patterns and ori-
entational maps obtained at different val-
ues of f, and simulation times (indicated
in the figure). The patterns in the left
panel correspond to short times and in
the middle to long times. In the orienta-
tional maps, dislocations have been in-
dicated with a black line and disclina-
tions with an open circle. The rightmost
side of the figure shows the gray scale
(color scale) used to indicate local ori-
entation.
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tions separated by an average distance of the order a/«a [6],
where a is the interdisk distance (lattice constant). Then
the size of the cells shown in Fig. 1 and the average
distance between dislocations are commensurate. This fea-
ture can be observed in Fig. 1 [16].

In different systems with hexagonal symmetry, it has
been found that the coarsening freezes at deep quenches
(7, > 1) [6,14]. In this case, the system becomes trapped
into a metastable state and it is unable to reach equilibrium.
By taking into account nonadiabatic correction to the
evolution equations, Boyer and Vidals [14] have shown
that this is due to the presence of pinning forces. These
pinning forces were shown to be the analogs of the Pierls
forces acting on dislocations in crystalline solids.

Figures 1(a) and 1(b) show the results of the simulation
for two different stages of the coarsening process. One im-
mediately notices the grain boundary motion and the relax-
ation of curvature in Fig. 1(b) as compared with Fig. 1(a).
Although present, the pinning forces acting on the dislo-
cations are clearly defeated by the line tension along the
grain boundary. If driven purely by curvature, the dynamics
is expected to be led by a power law. However, by the rea-
sons discussed below, here the dynamics becomes slower.

To determine the time evolution of the degree of order-
ing in the system, we compute different correlation lengths.
The orientational correlation length &¢ can be determined
by approximating the circularly averaged orientational
correlation function gg(r) with a single exponential:
g6(r) ~exp(—r/&q). Here g¢(r) is defined as g4(r) =
(exp[6i(6(r) — 6(r'))]), where 0 represents the local bond
orientation (see Ref. [7] for details). Figures 1(c) and 1(f)
show the color maps with the local orientation 6 of the
lattice. Note the orientational distortions introduced by
dislocations.

A characteristic correlation length & can be determined
through the full width at half maximum of the main peak of
the scattering function S(k) = ((k)#(k)*). We also ana-
lyze the correlation lengths defined through the density of
dislocations py, and the density of disclinations pg. A
correlation length associated to disclinations can be de-
fined as &4(1) ~ pq(r)~'/2 [7]. Here we found that most of
the disclinations are bound to TP. Differently from the
disclinations, the dislocations are not randomly distributed,
but they appear to be decorating the grain boundaries. Then
a characteristic grain size defined by a dislocation array
can be defined as &4(t) ~ pqs(t) ' [6].

Figure 2 shows the temporal evolution of the various
correlation lengths studied here. Differently from previous
works on block copolymers where the correlation lengths
grow according to a power law [4,6,7], here we found a
logarithmic dependence in time. This feature is clearly ob-
served in Fig. 2 through the linear fits to the different
correlation lengths.

In Fig. 3, we show the process of coarsening as viewed
through the orientational maps. In the time sequence of
this figure, it is possible to observe the motion and annihi-
lation of TP (triangles). During this process, however, a
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FIG. 2. Time evolution of the different correlation lengths
analyzed in this work for 7, = 0.01 (symbols indicated in the
figure) and logarithmic fit (lines). Inset: Activation energy den-
sity as a function of 7, for &g (squares) and &4, (triangles).

certain number of TP remain pinned to their positions
(squares).

Since the free energy associated to the hexagonal pattern
is invariant under rigid rotations, the bulk energies of the
different grains are thermodynamically equivalent. Then
the relaxation towards equilibrium is led by the relaxation
of the surface energy. This process is responsible for the
straightening of the grain boundaries observed in Figs. 1
and 3. Note the similarities of our patterns with the scheme
of relaxation proposed by Lifshitz [8] (bottom of Fig. 3).
As a consequence of the minimization of the surface
energy, the configuration of the grain boundaries radiating
from TP acquires well-defined angles. Then these points
are feasible to become pinned to their positions once this
optimal configuration of the dislocation lines is attained.

Dislocations located along grain boundaries recombine
and annihilate each other in order to reduce the curvature.
Once the grain has relaxed its curvature, further grain
boundary motion requires one to overcome the free energy
barriers imposed by the TP and the anisotropy in the line
tension. These immobile TP may become activated at
larger time scales by a hierarchical process involving the
annihilation of a neighbor TP. Once these annihilation
events have been accomplished, the activation is started
when the lines of dislocation radiating from the TP acquire
a configuration where there is an imbalance in the net force
acting on the TP.

The pinning of TP leads to the formation of regions
trapped into a metastable state, slowing down the process
of coarsening. Although this metastable state does not
minimize the total free energy of the system, it can be
kinetically stable [8].

In addition to the logarithmic dependence of the corre-
lation lengths in time, we have observed that under small
perturbations the domain walls involved in equilibrated TP
repel each other, in agreement with the theoretical predic-
tions of Safran [9].
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FIG. 3 (color online). Mechanism of coarsening analyzed
through orientational maps. Triangles and squares indicate acti-
vated and inactivated TP, respectively. Bottom: Formation of a
kinetically stable lattice of domains as proposed by Lifshitz.

If some energy barrier U, is involved in the activation of
the TP, the rate of change of the correlation length ¢ should
be dé/dr ~ exp(—U,/kT). Since the free energy excess is
produced mainly by the interfaces, we have U, ~ E ¢,
where E, is the free energy density in units of k7. Then,
solving for £ at long times, we have £(¢) ~ (1/E,) Int.

The inset in Fig. 2 shows the dependence of E, as a
function of 7, for the orientational correlation length &g
and the correlation length obtained through the disloca-
tions &4. In this inset, it is possible to observe that the
activation energy density associated to & is about a factor
of 4 larger than the associated to &4, in agreement with the
qualitative observations. We found that these activation
energy densities satisfy the hyperbolic relationship Ea ~
7,/(19 + T,), Where 7, is a constant.

Differently from atomistic simulations or experiments
with hard colloidal particles, in soft crystals the nanodo-
main can modify its configuration in order to relax the
stress field introduced by the defects [17]. Then, in this
class of soft materials, the stress-strain fields associated to
the topological defects are not expected to be the same as in
hard crystalline solids. These effects can be very important,
for example, in determining the interplay between dislo-
cations and disclinations in the Kosterlitz-Thouless transi-
tion [18]. However, it is important to emphasize that the
phenomenology we are studying is quite general and not
specifically limited to diblock copolymers [16].

In conclusion, we have analyzed the process of coarsen-
ing in a 2D hexagonal system in the absence of thermal
fluctuations. We have found a distinctive region of the
phase diagram where the TP dominates the dynamics and
can lead to the formation of the kinetically stable configu-

rations of domains proposed by Lifshitz. Triple points
pinned to local traps can be activated by a hierarchical
process involving the motion and subsequent annihilation
of neighbor triple points. Differently from other regions of
the phase diagram where the dynamic freezes as a conse-
quence of the Pierls-like forces acting on dislocation lines
[14], here these forces are surmounted by the line tension.
In the neighborhood of the spinodal line, the temporal
evolution of the correlation lengths depends logarithmi-
cally on time. It is hoped that this Letter will stimulate
experimental research in this region of the phase diagram
to study the dynamics of TP.
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