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The dynamics of neural networks is influenced strongly by the spectrum of eigenvalues of the matrix
describing their synaptic connectivity. In large networks, elements of the synaptic connectivity matrix can
be chosen randomly from appropriate distributions, making results from random matrix theory highly
relevant. Unfortunately, classic results on the eigenvalue spectra of random matrices do not apply to
synaptic connectivity matrices because of the constraint that individual neurons are either excitatory or
inhibitory. Therefore, we compute eigenvalue spectra of large random matrices with excitatory and
inhibitory columns drawn from distributions with different means and equal or different variances.
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Knowledge of the statistical properties of eigenvalues of
large random matrices has proven valuable in a wide range
of applications [1,2]. In neuroscience, networks of neurons
are often studied using models in which interconnections
are represented by a synaptic matrix with elements drawn
randomly [3,4]. The distribution of eigenvalues of this
matrix is useful for studying spontaneous activity and
evoked responses in such models [3–7]. For example, the
existence of spontaneous activity depends on whether the
real parts of any of the eigenvalues are large enough to
destabilize the silent state in a linear analysis, and the
spectrum of eigenvalues with large real parts provides
strong clues about the nature of the spontaneous activity
in the full, nonlinear models. A classic result in random
matrix theory is Girko’s circle law [8], which states that,
for large N, the eigenvalues of an N � N asymmetric
random matrix lie uniformly within the unit circle in the
complex plane, if the elements are chosen from a distribu-
tion with zero mean and variance 1=N. When partial
symmetry is included, the circle changes to an ellipse [9].

Unfortunately, these results do not apply to the synaptic
matrices used in realistic neural network models. Neurons
are either excitatory or inhibitory, which means that the
synapses they make on their targets are all of one type or
the other. Thus, the elements of the synaptic matrix must be
drawn from two distributions with different means and
perhaps different variances. Furthermore, each column of
the matrix must have all excitatory (positive) or all inhibi-
tory (negative) elements. Our goal is to determine the
eigenvalue spectra of such matrices.

We construct a random synaptic matrix by choosing the
elements of fN ‘‘excitatory’’ columns from an excitatory
distribution and the elements of the remaining �1� f�N
‘‘inhibitory’’ columns from an inhibitory distribution. Ini-
tially, we consider distributions for the excitatory and in-
hibitory columns with different means (�E=

����
N
p

> 0 for ex-
citatory and �I=

����
N
p

< 0 for inhibitory) but the same vari-
ance, 1=N. We primarily study a ‘‘balanced’’ situation
[10,11] in which the average of the combined excitatory
and inhibitory distributions is 0, i.e., f�E��1�f��I�0.

The result of numerically calculating the eigenvalues of
such a matrix is shown in Fig. 1(a). Most of the eigenvalues
lie within the unit circle, but there are a number of outliers.
The location of these outlying eigenvalues varies from
matrix to matrix, and their number does not appear to go
to zero as N increases. This makes it difficult to study them
analytically. Interestingly, the circle shown in Fig. 1(a) that
contains most of the eigenvalues has unit radius. If each
element of the matrix were chosen to be either excitatory or
inhibitory and then assigned a value from the appropriate
distribution, the eigenvalues of the synaptic strength matrix
would obey a circle law, but the radius of the circle would

be
����������������������������������������������
1� f�2

E � �1� f��
2
I

p
, rather than 1. Thus, the col-

umnwise assignment of distributions has a dramatic effect
on the distribution of eigenvalues.

It is possible to remove the outliers in Fig. 1(a) [see
Fig. 1(b)] by imposing a constraint that we now derive.
When the variances of the excitatory and inhibitory distri-
butions are equal, we can write our N � N synaptic matrix
as J�M, where the elements of J obey hJiji � 0 and
hJ2
iji � 1=N, with the angle brackets representing an aver-

age over the distribution from which these elements are

Re(λ) Re(λ)

Im(λ) b. Im(λ)a.

FIG. 1. Numerical results for the distribution of eigenvalues in
the complex plane for N � 1000. (a) If excitatory and inhibitory
elements are drawn from distributions with different means but
the same variance, a few eigenvalues lie outside the unit circle.
(b) When Eq. (2) is imposed, the eigenvalues lie inside the unit
circle.
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drawn. Thus, the eigenvalues of J lie uniformly inside the
unit circle in the complex plane [8].
M is a matrix in which every row is identical and is equal

to 1=
����
N
p

times a vectorm that has fN elements equal to�E

and �1� f�N elements equal to �I. The result of multi-
plying any vector v by M is

 Mv �
1����
N
p �m � v�u where ui � 1 for i � 1; . . . ; N:

(1)

All of the eigenvalues of M are zero and, in particular, the
vector u is a right eigenvector of M with eigenvalue m �
u=

����
N
p
�

����
N
p
�f�E � �1� f��I	 � 0. Note that the ele-

ments of M are of the same order of magnitude (1=
����
N
p

)
as the elements of J, so the presence of the outliers in
Fig. 1(a) is not surprising.

To force the outliers inside the unit circle, we impose the
condition

 Ju � 0; (2)

which implies that the strengths of the synapses to each
neuron (corresponding to one row of J) independently sum
to zero [12]. This corresponds to a balance condition not
only on the average synaptic strength but also on the
specific sum for each neuron [10,11].

Equation (2) implies that u is a right eigenvector of J. If
we denote the ath left eigenvector of J by La, this means
that La � u � 0 for all the other eigenvectors of J. Thus,
according to Eq. (1), LaM � 0 for all these eigenvectors,
so they are left eigenvectors of both J and J�M with the
same eigenvalues. Furthermore, because the vector u is a
right eigenvector of J with eigenvalue 0, it is a right
eigenvector of J�M with eigenvalue

����
N
p
�f�E � �1�

f��I	 � 0. Thus, the eigenvalues of J and J�M are
identical, and shifting the means of the excitatory and
inhibitory distributions away from zero in a balanced
manner has no effect on the eigenvalues, provided that
Eq. (2) is satisfied. This is illustrated in Fig. 1(b), which
shows the eigenvalue distribution computed numerically
for a matrix constructed as in Fig. 1(a), but with the balance
condition imposed row by row by subtracting the same
constant from each element in the row.

Although the balance constraint of Eq. (2) has a signifi-
cant effect on the interaction between J and M, it does not
change the distribution of eigenvalues [13] of J, for large
N. This is because J acts as a random �N � 1� � �N � 1�
matrix in the subspace spanned by the left eigenvectors of J
orthogonal to u. It thus has N � 1 eigenvectors distributed
uniformly within a circle in the complex plane of radius�����������������������
�N � 1�=N

p
, which goes to 1 as N ! 1. The additional

eigenvalue of J is the zero eigenvalue from Eq. (2).
In addition to having different means, the distributions

for excitatory and inhibitory synapses are likely to have
different variances. The inset in Fig. 2(a) shows that in this
case, the eigenvalues lie inside a circle, but they are no

longer distributed uniformly. We now consider this novel
effect analytically.

According to the above results, the eigenvalues of J�
M are identical to those of J provided Eq. (2) is satisfied.
Therefore, we can compute the eigenvalues of J rather than
J�M (except that we will include different variances for
different columns). In addition, imposing the constraint of
Eq. (2) does not change the distribution of eigenvalues of J,
for large N. These two observations imply that we can
compute the eigenvalue spectrum we seek using distribu-
tions with different variances but 0 means, without having
to impose Eq. (2).

We now proceed to calculate the density of eigenvalues
� in the complex plane for such a matrix, averaged over the
underlying probability distributions. Our calculation fol-
lows the approach used in Ref. [9], which begins by con-
sidering the quantity G�!� � Tr�1=�!I � J�	, which is
also equal to

R
d2��=�!� ��, where I is the identity

matrix, ! is a complex variable, and the integral in the
second expression is over complex �. As shown in Ref. [9],
for example, the real and complex parts of G�!� act like
the x and y components of an electric field in two dimen-
sions produced by a charge density given by �. As a result,
� can be related to a potential � through Poisson’s equa-
tion. Finally, the potential can be written in terms of a
determinant of a square of the operator !I � J which can,
in turn, be expressed in terms of a Gaussian integral [9]
(see below).

We consider cases in which the density and potential are
functions of j!j2 so that

 � �
1

�
�j!j2�00 ��0�; (3)

where the primes denote derivatives with respect to j!j2.
We construct a matrix with different variances for different
columns by expressing its elements as Jij�j with the
elements of J drawn from a Gaussian distribution with
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FIG. 2. Density � of eigenvalues as a function of radius in the
complex plane j!j, for N � 1000. The solid lines are the result
of the analytic calculation and symbols are numerical results.
(a) Results for different fractions f of excitatory and inhibitory
elements, and � � 0:06. The inset shows eigenvalues in the
complex plane computed numerically for f � 0:5 and � �
0:06. (b) Results for different excitatory variances 1=�N�) and
f � 0:5, with the inhibitory variance equal to 1=N.
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zero mean and variance 1=N. This matrix satisfies
h�Jij�j�

2i � �2
j=N. The potential we need is determined

by

 exp��N�� �
Z YN

i�1

dz
i dzi
�

exp��N ~Q�; (4)

with the average over the distribution of J values given by

 exp��N ~Q� �
Z YN

i;j�1

�������
N
2�

s
dJij exp��NQ�: (5)

In our case,

 Q �
X
i

�
j!j2

�2
i

� �i

�
z
i zi
N
�

1

2

X
i;j;k

JkiAijJkj �
X
k;j

BkjJkj;

Aij �
z
i zj
N
�
z
jzi
N
� 	ij; Bkj �

!
z
kzj
�kN

�
!z
jzk
�kN

(6)

and the term involving �i is introduced to assure conver-
gence of the integrals, with the understanding that all �i !
0 from the positive side at the end of the calculation.

To order 1=
����
N
p

, the matrix A has all but two of its
eigenvalues equal to one. The two exceptions are the
eigenvectors zi and z
i , both with eigenvalue 1� r. This
observation allows us to compute the Gaussian integral
over J in Eq. (5) by completing the square [shifting J by
Jij ! Jij � Bij=�1� r�] and calculating the determinant
of A. The result is
 

~Q � ln�1� r� �
j!j2~r
1� r

� r�; where r �
1

N

X
i

z
i zi;

~r �
1

N

X
i

z
i zi
�2
i

and r� �
1

N

X
i

�iz


i zi: (7)

The potential � is then determined by computing the
integrals over z and z
 by saddle-point approximation [14].

In the case of excitatory and inhibitory neurons, there
are two variances. Without loss of generality, we choose
fN columns from a distribution with variance �2

E �
1=�N�� and �1� f�N columns from a distribution with
variance �2

I � 1=N. In this case, we define r1 as 1=�N��
times the sum of jzij2 over all i values corresponding to
excitatory columns, and r2 as 1=N times the sum of jzij2

over all inhibitory i values. Then,

 � � ln
�

1� r1 � r2

�r1�
f�r2�

1�f

�
�
j!j2��r1 � r2�

1� r1 � r2
� �1r1 � �2r2;

where this expression is to be evaluated at values of r1 and
r2 that minimize �. The extra factors in the logarithm in �
as compared to ~Q come from expressing the integrals over
z and z
 in spherical coordinates.

The equations @�=@r1 � @�=@r2 � 0 that determine r1

and r2 are

 

��1 �
1� �j!j2

1� r1 � r2
�
f
r1
�
j!j2��r1 � r2�

�1� r1 � r2�
2

and � �2 �
1� j!j2

1� r1 � r2
�

1� f
r2
�
j!j2��r1 � r2�

�1� r1 � r2�
2 :

(8)

Here the convergence factors have reduced to two, �1 and
�2, and these equations must be solved in the limit where
these both go to zero from the positive side.

Equations (8) have two solutions depending on whether
j!j2 is greater than (outside solution) or less than (inside
solution) a critical value 1� f� f=�. It is easiest to
express the solutions by writing r1 � qr2. Then, outside
the circle

 r2 �
��1� f�

�j!j2 � 1��� ��� 1�f
and q �

f
��1� f�

;

(9)

which gives the potential

 � � 1� ln
�

�f

�f�f�1� f�1�f

�
� ln�j!j2�; (10)

and a zero density, � � 0. Inside the circle,

 r2 ! 1 and

q �
�1� ��j!j2 � 2f� 1

2�1� f�

�

����������������������������������������������������������������������������
��1� ��j!j2 � 1	2 � 4f�1� ��j!j2

p
2�1� f�

(11)

and

 � � ln
�
1� q

qf

�
�
j!j2�q�� 1�

q� 1
: (12)

The density of eigenvalues, �, is obtained from this using
Eq. (3) and

 

�0 �q0
�

1

q�1
�
f
q
�
�j!j2

q�1
�
j!j2��q�1�

�q�1�2

�
�
�q�1

q�1

and �00 �q00
�

1

q�1
�
f
q
�
�j!j2

q�1
�
j!j2��q�1�

�q�1�2

�

�2q0
�
�

q�1
�
�q�1

�q�1�2

�
��q0�2

�
�1

�q�1�2
�
f

q2

�
2�j!j2

�q�1�2
�

2j!j2��q�1�

�q�1�3

�
(13)

where, from Eq. (11),
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q0 �
1��

2�1�f�

�

�
1�

�1���j!j2�1�2f�����������������������������������������������������������������������
��1���j!j2�1	2�4f�1���j!j2

p �

and q00 �
�1���2

2�1�f�
�����������������������������������������������������������������������
��1���j!j2�1	2�4f�1���j!j2

p
�

�
1�

��1���j!j2�1�2f	2

��1���j!j2�1	2�4f�1���j!j2

�
:

(14)

Figure 2 compares the analytic expression we have
computed for the density of eigenvalues with numerical
results for N � 1000. The numerical densities were calcu-
lated by counting the number of eigenvalues in successive
concentric rings. All of the eigenvalues are located inside a
circle of radius

����������������������������
1� f� f=�

p
because � � 0 for the out-

side solution. Note that, since we are considering the case
N�2

E � 1=� and N�2
I � 1, the square of this radius can

also be written asN�f�2
E � �1� f��

2
I 	. Thus, the square of

the radius of the circle containing the eigenvalues is N
times the average of the variances of the excitatory and
inhibitory distributions. The distributions are characterized
by a high-density central region with a radius given ap-
proximately by min��E; �I�

����
N
p

, which is equal to 1 in the
cases shown in Fig. 2.

Figure 2(a) shows results with � � 0:06 for different
values of f. The value of f determines how many eigen-
values fall into the high-density central region, with higher
central densities for smaller f values. There are two limits
in which our results reduce to the usual circle law, f ! 0
and f ! 1. When f � 0, all the elements of the matrix
come from a single distribution with variance 1=N, and the
eigenvalues all fall uniformly inside the inner circle of
radius 1. When f � 1, all the elements come from a
distribution with variance 1=�N��, and all the eigenvalues
lie uniformly inside a circle of radius

���������
1=�

p
.

Figure 2(b) shows results with f � 0:5 for different
values of �. We only consider � � 1 because �> 1 can
be reduced to this case by rescaling the matrix and chang-
ing f ! 1� f. When� � 1, both of the distributions have
the same variance, �2

E � �2
I � 1=N, and the density is

uniform inside the unit circle.
Our results were obtained using Gaussian distributions,

but they apply more generally. For example, they apply
even though synaptic strength distributions are non-
Gaussian [15] and include a zero-strength 	 function due
to the sparseness of neuronal connectivity. Neurons do not
normally form synaptic connections with themselves, but
we did not eliminate diagonal terms in the synaptic matrix
for our calculations because their effect is negligible for
large N. Finally, if Eq. (2) is imposed but the balance

condition on the means is not satisfied, the eigenvalues
will be identical to what we have computed except that the
eigenvalue at zero will be shifted to

����
N
p
�f�E��1�f��I	.

The eigenvalue distributions we have obtained have
several implications for neural network dynamics. First
and most surprisingly, modifying the mean strengths of
excitatory and inhibitory synapses has no effect on stability
or small-fluctuation dynamics under balanced conditions.
Instead, the key elements in determining the spontaneous
dynamics of networks constructed in this way are the
widths of the distributions of excitatory and inhibitory
synaptic strengths. Furthermore, if these widths are differ-
ent, fewer eigenvalues will appear at the edge of the
eigenvalue circle, meaning that there will be fewer slowly
oscillating and long-lasting modes. In summary, the calcu-
lations we present suggest that having different cell types
with different distributions of synaptic strengths has a large
impact on network dynamics, and that the critical element
to measure, and the critical element that may be modified
by the modulatory and plasticity mechanisms that control
neural circuit dynamics, are the variances of the synaptic
strength distributions.
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