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We study living neural networks by measuring the neurons’ response to a global electrical stimulation.
Neural connectivity is lowered by reducing the synaptic strength, chemically blocking neurotransmitter
receptors. We use a graph-theoretic approach to show that the connectivity undergoes a percolation
transition. This occurs as the giant component disintegrates, characterized by a power law with an
exponent � ’ 0:65. � is independent of the balance between excitatory and inhibitory neurons and
indicates that the degree distribution is Gaussian rather than scale free.
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Representing complex structures as connected graphs
yields a simplification that retains much of their function-
ality. It is therefore natural that network connectivity
emerges as the fundamental feature determining statistical
properties, including the existence of power laws, cluster-
ing coefficients and the small world phenomenon [1].
While experimental access to man-made networks such
as the WWW or email is feasible [2], biological ones
such as the genetic networks must be painstakingly re-
vealed node by node [3]. The connectivity in living neural
networks is even more difficult to uncover [4] since con-
nections are hard to identify [5,6] and typically differ from
brain to brain and from culture to culture [7,8]. Unraveling
the neural wiring diagram even in small cultures, with
�105 neurons and �107 connections, is presently not
feasible although connectivity has been linked to informa-
tion coding [5,9,10].

Neural cultures derived from rat hippocampus develop
into networks that display bursts of activity, governed by
the presence of both excitatory and inhibitory neurons
[7,11]. In this Letter, we present a novel experimental
approach to quantify statistical properties of such net-
works, and study them in terms of percolation on random
graphs [12,13]. We control the connectivity of the entire
network, gradually reducing the synaptic strength by
means of chemical application. The initially connected
network progressively breaks down into smaller clusters
until a fully disconnected network is reached. Viewed
inversely, as the network’s connectivity increases, a perco-
lation transition occurs at a critical synaptic strength with
the emergence of a giant component, which increases as a
power law with an exponent � ’ 0:65.

Experimental setup and procedure.—Experiments were
performed on primary cultures of rat hippocampal neurons,
plated on glass coverslips following the procedure de-
scribed by Papa et al. [14] [Fig. 1(a)]. The cultures were
used 14–20 days after plating. The neural network in-
cludesN ’ 2:5� 105 neurons. The neural culture is placed
in a chamber that contains two parallel platinum wires
fixed at the bottom and separated by 15 mm [Fig. 1(b)].
The neurons are electrically stimulated by applying a

20 msec bipolar pulse through the wires. The current is
controlled and gradually increased between subsequent
pulses, while the corresponding voltage drop V is mea-
sured with an oscilloscope. The chamber is mounted on a
Zeiss inverted microscope with a 10X objective, and neu-
ronal activity is monitored using the fluorescent cal-
cium indicator Fluo-4. Images were captured with a
cooled charge-coupled device (CCD) camera at a rate of
5 frames= sec, and processed to record the fluorescence
intensity F of a sample of the culture including n ’ 400
individual neurons as a function of time [Fig. 1(d)]. The
images and the fluorescent signal are further analyzed to
reject glia cells [15]. Neural spiking activity is detected as a
sharp increase of the fluorescence intensity [15].

The connectivity of the network was gradually weak-
ened by adding increasing amounts of CNQX (6-cyano-7-
nitroquinoxaline-2,3-dione), the antagonist of the AMPA
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FIG. 1. (a) Fluorescence image of a small region of the neural
culture. Bright spots are cell bodies. Neural connections, mostly
dendrites, are visible. (b) Sketch of the experimental setup.
(c) Activity plot of the neural response. Black lines indicate
those neurons that respond to the excitation. (d) F�t� signal for 3
neurons at increasing voltages. Vertical lines show the excitation
time and arrows the responding neurons.
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(alpha-amino-3-hydroxy-5-methyl -4-isoxazolepropionic
acid) type receptors in the glutamate synapses of excitatory
neurons. NMDA (N-methyl-D-aspartate) receptors were
completely blocked with 20 �M of the corresponding an-
tagonist APV (2-amino-5-phosphonovalerate), enabling
the study of network breakdown due solely to CNQX. To
study the role of inhibition, we performed experiments
with inhibitory neurons either active or blocked with
40 �M of the GABA (Gamma-aminobutyric acid) recep-
tor antagonist bicuculline. From here on, we label the net-
work containing both excitatory and inhibitory neurons by
GEI and the network with excitatory neurons only by GE.

The response of the network for a given CNQX concen-
tration was measured as the fraction of neurons � that fired
in response to the electric stimulation at voltage V
[Fig. 1(c)]. Response curves ��V� were obtained by in-
creasing the stimulation voltage from 2 to 6 V in steps of
0:1–0:5 V. Between 6 and 10 response curves were mea-
sured per experiment, each at a different CNQX concen-
tration. Measurements were completed within 4 h, at the
end of which the culture was washed of CNQX to verify
that the initial network connectivity was recovered.

Model.—To elucidate the relation between the topology
of the living neural network and the observed neural re-
sponse, we consider a simplified model of the network in
terms of bond-percolation on a graph. The neural network
is represented by the directed graph G. Our main simplify-
ing assumption is the following: A neuron has a probability
f � f�V� to fire as a direct response to the externally
applied electrical stimulus, and it always fires if any one
of its input neurons fire. This ignores the fact that more
than one input is needed to excite a neuron and that con-
nections are gradually weakened rather than abruptly re-
moved. The model also ignores the presence of feedback
loops and recurrent activity in the neural culture. However,
we verified with numerical simulations that relaxing these
assumptions does not affect the validity of the model [15].

Evidently, the firing probability ��f� increases with the
connectivity ofG because any neuron along a directed path
of inputs may fire and excite all the neurons downstream.
All the upstream neurons that can thus excite a certain
neuron define its input-cluster or excitation-basin. It is
therefore convenient to express the firing probability as
the sum over the probabilities ps of a neuron to have an
input cluster of size s� 1,
 

��f� � f� �1� f�P�any input neuron fires�

� f� �1� f�
X1

s�1

ps�1� �1� f�
s�1�

� 1�
X1

s�1

ps�1� f�s; (1)

where we used the probability conservation
P
sps � 1. It is

readily seen that ��f� increases monotonically with f and
ranges between ��0� � 0 and ��1� � 1. The deviation of
��f� from linearity manifests the connectivity of the net-

work (for disconnected neurons ��f� � f). Equation (1)
indicates that the observed firing probability ��f� is ac-
tually one minus the generating function H�x� (or the
z-transform) of the cluster-size probability ps [16],H�x� �P
1
s�1 psx

s � 1���f�, where x � 1� f. One can extract
from H�x� the input-cluster-size probabilities ps, formally
by the inverse z-transform, or more practically, in the
experiment, by fitting H�x� to a polynomial in x.

Once a giant component emerges, the observed firing
pattern is significantly altered. In an infinite network, the
giant component always fires no matter what the firing
probability f is. This is because even a very small f
suffices to excite one of the infinitely many neurons that
belong to the giant component. We account for this effect
by splitting the neuron population into a fraction g that
belongs to the giant component and always fires and the
remaining fraction 1� g that belongs to finite clusters:
 

��f� � g� �1� g��f� �1� f�P�any inp. neur. fires�	

� 1� �1� g�
X1

s�1

ps�1� f�s: (2)

As expected, at the limit of almost no self-excitation f ! 0
only the giant component fires, ��0� � g, and ��f�mono-
tonically increases to ��1� � 1. With a giant component
present the relation between H�x� and ��f� becomes

 H�x� �
X1

s�1

psxs �
1���f�

1� g
: (3)

In reality, the giant component is not infinite and it is
measured from a sample which has n neurons. Therefore,
it fires only after a nonzero, though small, firing probability
fT is exceeded. To estimate this finite size threshold we
note that when we measure a giant component of size gn,
then the firing probability is

 ��f� ’ g�1� �1� f�ng� ’ g�1� e�fgn�: (4)

This probability becomes significant at the threshold

 fT ’ �gn�
�1: (5)

Measured network response.—An example of the re-
sponse curves ��V� for a GEI network with n � 450
neurons measured at 6 different concentrations of CNQX
is shown in Fig. 2. At one extreme, with �CNQX	 � 0, the
network is fully connected, and a few neurons with low
firing threshold suffice to activate the entire culture. This
leads to a very sharp response curve that approaches a step
function, where all neurons form a single cluster that
comprises the entire network. At the other extreme, with
high concentrations of CNQX ( ’ 10 �M) the network is
completely disconnected, the response curve rises moder-
ately, and is given by the individual neurons’ response.
��V� for individual neurons (denoted as �1�V�) is well
described by an error function �1�V� � 0:5�

0:5erf�V�V0��
2
p
�0
�. The firing threshold of a neuron in the net-

work thus follows a Gaussian distribution with mean V0

and width 2�0.
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Intermediate CNQX concentrations induce partial
blocking of the synapses. As the network breaks up, neu-
rons receive on average fewer inputs, and a stronger exci-
tation has to be applied to light up the entire network. The
response curves are gradually shifted to higher voltages as
[CNQX] increases. Initially, some neurons break off into
separated clusters, while a giant cluster still contains most
of the remaining neurons. The response curves are then
characterized by a big jump that corresponds to the biggest
cluster (giant component), and two tails that correspond to
smaller clusters of neurons with low or high firing thresh-
old (Fig. 2). Error functions describe these tails well.
Beyond these concentrations ([CNQX] * 500 nM for
GEI networks), a giant component cannot be identified,
and the whole response curve is then also well described
by an error function.

Giant component.—The biggest cluster in the network
characterizes the giant component, g. Experimentally, it is
measured as the biggest fraction of neurons that fire to-
gether in response to the electric excitation. For each
response curve, g is measured as the biggest jump ��,
as shown by the gray bars in Fig. 2. The size of the giant
component is considered to be zero when a characteristic
jump cannot be identified, or when the jump is comparable
to the noise of the measurement, which is typically about
4% of the number of neurons measured.

We studied the size of the giant component in a range of
CNQX concentrations spanning almost 3 orders of magni-
tude from 0 nM to 10 �M in logarithmic scale. We define
the control parameter c � 1=�1� �CNQX	=Kd� as a mea-
sure of the synaptic strength, where the dissociation con-
stantKd � 300 nM is the concentration of CNQX at which
50% of the receptors are blocked [17]. The parameter c
characterizes the connectivity probability between two
neurons and takes values between 0 (full blocking, inde-
pendent neurons) and 1 (full connectivity). Conceptually, it

quantifies the number of receptor molecules that are not
bound by the antagonist CNQX and therefore are free to
activate the synapse.

Figure 3 shows the breakdown of the network for both
GEI and GE networks. The giant component for GEI net-
works breaks down at much lower CNQX concentrations
compared with GE networks, and one can think of the
effect of inhibition on the network as effectively reducing
the number of inputs that a neuron receives on average. For
GEI networks, the giant component vanishes at [CNQX] ’
600 nM, while for GE networks the critical concentration
is around 1000 nM.

The behavior of the giant component indicates that the
neural network undergoes a percolation transition, from a
set of small, disconnected clusters of neurons to a giant
cluster that contains most of the neurons. We describe the
percolation transition by a power law g� j1� c=coj

�,
even though some data points are far from the transition.
Power law fits for GEI and GE networks give the same �
within the experimental error (inset of Fig. 3), with co �
0:36
 0:02, � � 0:66
 0:05 for GEI, and co � 0:24

0:02, � � 0:63
 0:05 for GE.

Cluster distribution analysis.—The construction of the
experimental functionH�x� defined in Eq. (3) allows the fit
of a polynomial

P
spsx

s to determine the size distribution
ps�s� for clusters that do not belong to the giant compo-
nent. Since f � �1�V� is the response curve for individual
neurons (Fig. 2) and x � 1� f, the function H�x� for each
response curve is obtained by plotting 1���V� as a
function of 1��1�V�. For curves with a giant component
present, its contribution is eliminated and the resulting
curve normalized by the factor 1� g.

The inset of Fig. 2 shows H�x� for the response curves
shown in the same figure. The corresponding ps�s� distri-
butions, shown in Fig. 4(a), are obtained from polynomial
fits up to order 20 [15]. Since the cluster analysis is
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FIG. 2 (color online). Response curves ��V� for 6 concentra-
tions of CNQX and n � 450 neurons. The gray bars show the
giant component size. Lines are a guide to the eye except for
1 �M and 10 �M that are fits to error functions, with V0 �
3:96 V and �0 � 0:46 V for �1�V�. Inset: Corresponding H�x�
functions. The bar shows the size of the giant component for
300 nM.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

10-2 10-1 100 101

0.1

1

700 nM

500 nM

900 nM

300 nM
50 nM

260 nM

500 nM

gi
an

tc
om

po
ne

nt
,g

synaptic strength, c = 1/ (1 + [CNQX] / K
d
)

140 nM

g

|1 - (c / c
0
)|

0.65

FIG. 3 (color online). Size of the giant component as a func-
tion of the synaptic strength c, averaged over 18 GEI networks
(�) and 6 GE networks (�). Lines are a guide to the eye. Some
CNQX concentrations are indicated for clarity. Inset: Log-log
plot of the power law fits g� j1� c=coj�. The slope 0.65
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sensitive to experimental resolution, it is limited to g &

0:8, which corresponds to [CNQX] * 200 nM for GEI

networks. Experimental resolution also limits the observa-
tion of very small clusters for [CNQX] & 500 nM since
they are associated with values of ��V� close to 1 [15].
Hence, the cluster-size distribution of Fig. 4(a) shows the
correct behavior, but not the precise details. Overall, as
shown in Fig. 4(b), the clusters start out relatively big and
with a broad distribution in sizes, to rapidly become
smaller with a narrow distribution for gradually higher
concentrations of CNQX. Isolated peaks in ps�s� indicate
nontreelike clusters outside the giant component, in con-
trast to the model. This hints at the persistence of loops and
at a local connectivity. While our sample covers only part
of the culture, it does represent the statistics of the whole
population. Sample size affects the noise level, but the
overall cluster-size distribution of Fig. 4(a) is representa-
tive of the whole network. Our assumption that one input
suffices to excite a neuron leads to an under-estimation of
the cluster sizes [15], probably in direct proportion to the
number of inputs needed to excite a neuron, which is on the
order of 10 [10].

Finite size effects are observed in the behavior of the
firing threshold for the giant component fT , which in-
creases linearly with 1=g, as predicted in Eq. (5). fT�g�
is measured for each concentration as the value of f at
which the giant component fires. Figure 4(c) shows the
results for two groups of experiments with hni � 90 and
hni � 400 neurons measured. Linear fits provide slopes ’
0:02 and ’ 0:005, which are of the same order of magni-
tude as 1=n, with n the number of neurons measured.

Discussion.—Neural cultures turn out to be an experi-
mental systems in which a clear percolation transition can
be mapped out in detail. The graph approach has proven
remarkably successful in supplying a simplified picture for
a highly complex neuronal culture, yielding quantitative
measures of the connectivity. The measured exponent �

appears to be independent of the culture details, such as the
ratio between excitation and inhibition or the variance
between different cultures. Since � characterizes the dis-
tribution of connections per node, it is possible to estimate
the connectivity distribution by comparing the experimen-
tal value of � with the one obtained from simulations or
theoretical developments.

Numerical simulations of our model with a Gaussian
degree distribution provide � � 0:66
 0:05, as in the
experiments [15]. Percolation on directed random graphs
with power law degree distribution pk�k� � k�� gives �
equal or larger than 1, where its exact value depends on the
degree exponent � [18]. Since this value is clearly different
from our experimental observations and simulations, we
conclude that the connectivity distribution in the neural
network is not a power law one. This may be a crucial
difference between networks grown with cultured neurons
versus those growing naturally in the brain.
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FIG. 4 (color online). (a) Cluster-size distribution ps�s� for the
experiment shown in Fig. 2. (b) Average cluster size, hsi, and
variance of the cluster-size distribution, �2 � hs2i � hsi2, as a
function of the concentration of CNQX, averaged over 15 GEI

networks. (c) Giant component firing threshold fT as a function
of 1=g for two groups of experiments with 90 (�) and 400 (�)
neurons measured, and for CNQX concentrations between 0 and
500 nM. Lines are least square fits.
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