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Large step shear experiments revealed through particle tracking velocimetry that entangled polymeric
liquids display either internal macroscopic movements upon shear cessation or rupturelike behavior
during shear. Visible inhomogeneous motions were detected in five samples with the number of
entanglements per chain ranging from 20 to 130 at amplitudes of step strain as low as 135%.
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Many structured fluids share a universal characteristic
known as viscoelasticity. These materials may be expected
to behave like solids under external deformations. Specific
microstructures determine the actual flow behavior of such
complex systems as micelles, liquid crystals, polymers,
colloids, foams, gels, glasses, granular materials, etc., As
the microstructure rearranges in flow, the average rheo-
logical properties may exhibit nonlinear features such as
strain softening, stress overshoot and shear thinning. For
polymers, chain entanglement is a dynamic structure re-
sponsible for the observed sluggish relaxation dynamics. In
quiescence, the entanglement is modeled with de Gennes’s
concept [1] of chain reptation in an impenetrable tube. The
Doi-Edwards tube model [2] and its variations extended
the notion of chain reptation and prescribed a scheme for
depicting nonlinear flow behavior. It is widely recognized
that the quantitative agreement [2] between the theoretical
prediction [3–5] of the shear stress relaxation behavior
upon large step strains and corresponding experimental
observations [6] was an explicit validation of the Doi-
Edwards tube theory and laid the foundation of the prevail-
ing paradigm for polymer rheology [7].

However, another class of experimental data known as
type C behavior [8–10] shows excessive strain softening
and does not fit with this theoretical prediction of Doi and
Edwards [2] and subsequent calculations based on a slip-
link model [4]. A large body of literature has been devoted
to an attempt to reconcile the apparent difference between
experiment and theory. The original unphysical feature in
the Doi-Edward tube model of a stress maximum for
steady shear flow of entangled polymers [11] led subse-
quent workers [12–14] to speculate that the step shear
deformation could occur inhomogeneously leading to the
observed much lower relaxation modulus than that mea-
sured in the linear response regime. But no specific mecha-
nism was put forward in these studies. The stress maximum
character of the Doi-Edwards model has also been thought
to be [15] the origin of the spurt phenomenon in capillary
flow and to produce shear banding in steady simple shear
flow [16]. However, over the past 20 years no shear band-
ing has been seen for polymers and spurt has been shown to
be only interfacial in nature. Subsequent studies on type C

behavior led to studies of polymer slip [17,18] and sec-
ondary flow [18–20], where flow visualization in a step-
strain experiment indicated ‘‘delayed slip’’ and visible
movement of the sample near the shearing surfaces.
Secondary flow was reported to occur near the edges in
the plane-Couette shear because of the large meniscus.
After two decades of investigation, the general consensus
is that the type C behavior may be caused by polymer slip
[21].

The present work only focuses on the "normal" type A
relaxation behavior of entangled polymers. Our finding is
that the phenomenon is far from expectation and not nor-
mal at all: instead of uniform quiescence after a step-strain,
inhomogeneous macroscopic motion is observed through-
out the sample thickness.

The Doi-Edwards tube theory made a famous prediction
for the damping function [22], h, as shown in Fig. 1 for
monodisperse entangled polymers; also plotted in Fig. 1
are the experimental data for a 10 wt% polybutadiene
(PBD) solution (labeled as 0.74 M 10% below), made of
a PBD from Bridgestone-America through courtesy of Dr.
C. Robertson (Mw � 738 000 and Mn � 683 000 g=mol)
dissolved in an oligomeric PBD (Sigma-Aldrich, catalog
number 200433, Mn � 1800 g=mol). Measurements were
taken with an Anton Paar MCR301 rotational rheometer
coupled to a 25 mm cone-plate with a 2� cone angle.
Indeed, agreement between the Doi-Edwards theory and
our experimental data is reproduced in Fig. 1.

However, when expressing the actual stress, �, at any
long time [22], t0 > �b, as a function of the imposed strain,
�0, surprising results were found as shown in the inset of
Fig. 1. The normalized stress, ��t0�=Ge�t0� � �0h��0�,
shows a maximum at �0 � 2:2. If the chain entanglement
network were to only suffer uniform deformation and to
stay otherwise intact, we expect that the shear stress �
would only increase monotonically with �0. Thus, the inset
in Fig. 1 forces us to ask the question of what the likely
origin of the negative slope of � vs �0 is.

We report here for the first time using a particle tracking
velocimetric (PTV) technique described elsewhere [23]
that entangled polymeric liquids do not remain quiescent
after a large step shear. Equivalent results were found in
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both cone-plate and parallel-disk shear cells as well as in a
home-made sliding-plate rheometer [24]. Below only some
essential findings are presented and all other results will be
deferred to future publications [24,25].

In this Letter, we report PTV observations on five en-
tangled 1,4-polybutadiene (PBD) solutions with the num-
ber of entanglements per chain ranging from ca. 20 to 130:
(1) 0.74 M 10%, which has been specified above;
(2) 15 wt% PBD (Mw � 1:8� 106 and Mn � 1:56�
106 g=mol) dissolved in low MW PBD (Mw � 3800 and
Mn � 3500), both made at Goodyear, labeled as 1.8 M
15%; (3) 15 wt% PBD (Mw � 1:052� 106 and Mn �
1:014� 106 g=mol) synthesized at Akron dissolved in a
low MW PBD (Mw � 8900 and Mn � 8500 g=mol) made
at Goodyear, labeled as 1 M 15%; (4) 4 wt% ultra high MW
PBD (Mw � 107 g=mol, made at Akron) dissolved in the
low MW PBD (Mw � 8900 and Mn � 8500 g=mol),
labeled as 10 M 4%; (5) 5 wt% PBD (Mw � 1:154�
106, Mn � 1:126� 106, made at Tennessee) in the low
MW PBD (Mw � 8900 and Mn � 8500 g=mol), labeled
as 1.2 M 5%.

Figure 2 shows two discrete applications of step strain
within 2 s on sample 3 (1 M 15%), in which there are 64
entanglements per chain. The inset shows that the sample
possesses a terminal relaxation time of � � 1=!c � 56 s.
The two preset strains were achieved at the times indicated
by the two arrows, respectively. For the lower step strain of
�0 � 3:2, the shear stress was close to its maximum,
whereas for the higher step strain of �0 � 4:6 the stress
passed a maximum. In both cases, the stress declined

rapidly during the first 8 s. Then a normal stress relaxation
process ensued, leading to a good superposition. The time-
strain separability is seen to occur after t > �b � 10 s in
these measurements. The kink in Fig. 2 has been seen
numerous times in the past [6,13,17]. This type of mea-
surement produces the information summarized in Fig. 1,
where the decrease of the damping function, h, stems from
the initial rapid stress decline.

We applied the recently developed PTV method [23] to
visualize the step shear imposition and subsequent dy-
namic processes that have been thought to occur quies-
cently [26]. Using MGI Videowave 4 software, the analysis
of the PTVobservations shows that the sample experienced
uniform deformation across H during shear for �0 � 3:2,
as indicated in the inset of Fig. 3 by the linear velocity
profiles at the beginning and at the end of shear. However,
instead of any anticipated quiescent stress relaxation [26],
significant movement of the sample was observed through-
out its thickness after the step strain. The considerable
macroscopic movement lasted about �b � 10 s, during
which the shear stress dropped sharply as shown in
Fig. 2. This instability has been captured with a video
camera and the video clip is available for online viewing
[27]. As a simple way to characterize the behavior after a
large step shear, we use vectors along the sample thickness
to indicate the amounts of movement of the traced particles
and their moving directions. As shown in Fig. 3, there are
two special planes inside the sample where the nearby
motions took place in opposite directions. The two arrows
pointing to the original shearing direction near both
boundaries of the sample indicate failure near the surfaces
as well.

The visible movement of the traced particles, i.e., the
macroscopic flow of the sample upon shear cessation can
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FIG. 2 (color online). Shear stress growth and relaxation be-
havior for two discrete step-strain experiments with �0 � 3:2
and 4.6, respectively, where the right Y axis shows the imposed
averaged strain as a function of time. The inset shows the linear
viscoelastic characteristics of the sample (1 M 15%).
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FIG. 1 (color online). The damping function obtained from
large step-strain experiments on a 10% PBD solutions (0.74 M
10%) in open squares, along with the original theoretical pre-
diction of the Doi-Edwards tube model in filled circles. The inset
shows the shear stress vs the imposed strain �0 at times t0 > tb,
which is derived directly from the damping function in the
figure.
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be seen for a step strain of amplitude just beyond �0 � 1:0,
which is well below the values that cause the symptom of
the stress maximum in Fig. 1. Figure 4 shows, for the four
different samples, that macroscopic motions took place in
various directions at a mere step strain of 135%. One video
clip is available online [27] as Movie 70 for the sample
1.8 M 15%.

There are several possible origins for the unexpected
macroscopic motion after shear cessation. Backflow could
take place if there was a residual shear stress gradient
across the gap, analogous to capillary flow. However, the
observed linear velocity profiles in the inset of Fig. 3 seem
to exclude this explanation. Sample detachment or slip
from the shearing surfaces could produce macroscopic
movements near the surfaces as seen before [17], but
both Figs. 3 and 4 show maximum movements in the
interior away from the interfaces. Could the sample have
broken up internally after suffering a large step strain?
What force keeps the chain entangled? Because of lack
of any existing notion, a tentative explanation is put for-
ward here. Let us suppose that the visible motion after
shear was due to internal disintegration through chain

disentanglement. What would be the onset condition for
such a process? A step strain of magnitude � produces a
shear stress � � G���� in the linear region and would
cause affine chain deformation, building an average elastic
force Fel per chain given by ����Fel � G����, where the
chain surface density has the form of ���� �
���Na=M�R0 and the plateau modulus for a solution at
weight fraction� isG��� � G0

N��Me=Me���	 in terms of
the pure melt’s plateau modulus G0

N � 4��BTNa=5Me,
with the entanglement molecular weight Me��� related to
the entanglement spacing lent as l2ent �Me���. With in-
creasing �, the elastic force borne by each entangled chain
would increase until the chain could afford an appreciable
entropic loss from conformational distortion to free itself
from the entangling medium. In order to undergo this
entropically unfavorable transformation or rearrangement
a force would need to be overcome that allows the wiggling
chain to thread through a narrow opening that is plausibly
comparable to the mesh size lent. This entanglement force
can be estimated to be given by Fent 
 kBTR0=l

2
ent. By

equating Fent with Fel, we find a critical condition of �c �
5=4, independent of the level of chain entanglement. This
condition seems consistent with the behavior found in
Fig. 4 where detectable macroscopic motion was seen in
the various samples for a step strain merely above 5=4.

For a larger step strain of �0 � 4:6, the inset of Fig. 5
shows that the velocity profile was also linear (circles) in
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FIG. 4 (color online). The four samples (1.8 M 15%, 10 M 4%,
1.2 M 5%, and 0.74 M 10%) all experienced a step strain of ca.
135% at uniform shear rates 8, 2.2, 70, and 1:4 s�1, respectively,
as indicated in the parentheses of the labels. As in Fig. 3, �x � 0
depicts the "equilibrium" position upon shear cessation. The four
types of symbols indicate the locations of the traced particles in
the different layers near the end of their macroscopic movements
after the step strain, in each of the four step-strain experiments.
Here the moving surface is the top plate situated at H � 0. The
shearing direction was to the left; therefore, �x > 0 represents
particle motion in the original shearing direction, and �x < 0
indicates particle movements in the opposite direction.
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FIG. 3 (color online). The movement and direction of the
traced particles upon completion of the prescribed strain de-
scribed in Fig. 2, where the vectors show the particle displace-
ments in each layer across the sample thickness, H, near the end
of the unexpected macroscopic flow at t� 8 s (i.e., about 6.6 s
after shear cessation) in the same units as determined by the
computer screen for the gap distance, H. The shearing direction
was to the left, thus �x > 0 indicates the original flow direction
and the red spots at �x � 0 are the particle initial positions. An
actual gap, H, of 0.9 mm shows up on the computer screen as ca.
7 cm in height. The inset indicates linear velocity profiles at two
instants during the imposition of the large step strain of �0 �
3:2. The velocity is given in terms of the screen scale at a rate of
30 frames per second.
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the initial stage of shearing. The velocity profile (in
squares) in the inset of Fig. 5 appears to reveal rupturelike
behavior as about 2=3 of the entire sample adjusted from
the linear profile (in circles) to that represented by the
squares, and the measured shear stress dropped sharply
as seen in Fig. 2. A similar PTV analysis of the macro-
scopic motion after shear cessation produces Fig. 5 where
the vectors show the distribution of these traced particles
across the sample thickness at a moment about 0.17 s after
shear cessation.

In summary, the particle tracking velocimetric observa-
tions indicated macroscopic motion throughout the sample
after application of a step strain instead of revealing a
quiescent sample. Visible nonuniform motions were seen
for four samples with different levels of chain entangle-
ment at a mere step strain of 135%, which is a much lower
amplitude than where the original Doi-Edwards tube the-
ory indicated a stress maximum in Fig. 1. Thus, we have
been compelled to put forward a new explanation of the
observed phenomenon. Specifically, we speculated that as
a sufficient elastic force builds up due to the imposed shear,
a chain might overcome an entropic barrier (that normally
prevents rapid conformational distortion in equilibrium) to
assume, in a short time, a new conformation with much
reduced entanglement interactions with the surrounding
medium.
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FIG. 5 (color online). An approximate quantification of the
early motions of the traced particles 0.17 s after completion of
the imposed strain in terms of their displacements, where the
horizontal dashed line indicates the fault plane produced during
shear. The inset shows the velocity profiles at two instants during
the imposition of the large step strain of �0 � 4:6. The remark-
able velocity profile at t � 1:83 s indicates rupturelike behavior
during shear.
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