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We present a novel algorithm that allows one to obtain temperature dependent properties of quantum
lattice models in the thermodynamic limit from exact diagonalization of small clusters. Our numerical
linked-cluster approach provides a systematic framework to assess finite-size effects and is valid for any
quantum lattice model. Unlike high temperature expansions, which have a finite radius of convergence in
inverse temperature, these calculations are accurate at all temperatures provided the range of correlations
is finite. We illustrate the power of our approach studying spin models on kagomé, triangular, and square
lattices.
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Understanding finite temperature thermodynamic prop-
erties of quantum lattice models is a fundamental and
challenging task [1,2]. Two general approaches that are
commonly used are studies of finite systems, by means of
exact diagonalizations (ED) or quantum Monte Carlo
(QMC) simulations, and series expansions in the thermo-
dynamic limit (TL). ED are usually limited to rather small
clusters and at finite temperatures and dimensions higher
than one it is very difficult to assess finite-size effects. On
the other hand, QMC methods enable one to study much
larger system sizes but then the classes of models that can
be addressed are severely limited by the (fundamental [3])
sign problem.

In order to obtain results in the TL one can use high
temperature expansions (HTE). Within this approach prop-
erties of the system are expanded in powers of inverse
temperature, � [4]. These expansions, carried out to order
�N (where N is typically around 10), provide accurate
numerical results for �<�c, where �c is the radius of
convergence of the series. Interestingly, HTE can fail to
converge even when correlations are still short ranged.
Beyond the region of convergence, series extrapolation
methods [5] allow one to calculate thermodynamic prop-
erties, but their reliability remains uncertain.

We introduce in this Letter a new method, a numerical
linked-cluster (NLC) approach, that works in the TL as
HTE, yet makes possible to obtain convergence at all
temperatures for models with short-ranged correlations. It
is also able to deal with multiple microscopic energy scales
in the problem, which can differ by several orders of
magnitude, something that is very difficult within HTE.
When the correlation length grows, larger clusters begin to
contribute and NLC, up to a given cluster size, no longer
converges. In some cases, one can accelerate the conver-
gence by using sequence extrapolation techniques [5,6].
We will discuss here the advantages of NLC over HTE and
ED for three different classes of models with dominant
microscopic energy scale J, referred below as (A) models
that remain short ranged at all temperatures, (B) models in
which correlations remain short ranged down to T � J,
and (C) models where correlations build up at T of order J.

The fundamental basis for a linked-cluster expansion,
for some extensive property P of an infinite lattice L, is the
relation [4,7]

 P�L�=N �
X

c

L�c�WP�c�: (1)

HereN is number of lattice sites, L�c� is the lattice constant
(number of embeddings of the cluster in the lattice per
lattice site) of cluster c, and WP�c� is the weight of the
cluster c for the property P. The latter is defined recur-
sively by the principle of inclusion and exclusion [4],

 WP�c� � P �c� �
X

s�c

WP�s�: (2)

Here P �c� is the property P calculated for the finite cluster
c and the sum on s runs over proper subclusters of c. In
HTE, for every cluster, P and, equivalently, its weight WP,
is expanded in powers of � and only a finite order of terms
are retained. In NLC, an exact diagonalization of the
cluster is used to calculate P and hence WP at any
temperature.

Note then that NLC builds in more bare information of
the system than HTE. We will show that when HTE con-
verges, NLC gives results that are identical to HTE.
However, NLC converges down to lower temperatures, in
some cases low enough to obtain ground state properties.
In addition, unlike HTE, the region of convergence of NLC
increases as larger clusters are included in the sum. Hence,
NLC helps to separate cases where the failure of HTE is
due to its (not understood) analytic structure in the com-
plex plane, from where the correlations truly exceed the
largest clusters studied.

There is a second aspect in which the NLC scheme is
fundamentally different to HTE, and that can be used to
ones advantage. In HTE, the choice of clusters is dictated
by the order in which they first contribute in the power
series, which is typically related to the number of bonds in
a cluster. In NLC, one has substantial freedom to arrange
the choice of clusters. They can be ordered by number of
sites, number of bonds, etc. The only requirement is that,
with increasing order, the cluster weights, when expanded
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in inverse temperature, should give the correct HTE coef-
ficients as well. A small subset of the clusters may limit the
order to which HTE coefficients are correct. Such expan-
sions may sacrifice efficiency in the exact HTE coeffi-
cients, but can lead to NLC which converge better at
intermediate and lower temperatures.

We first apply the NLC method to the kagomé lattice
Ising model. This model is exactly soluble and known to
stay disordered at all temperature with a finite entropy at
T � 0. Since a kagomé lattice consists of corner sharing
triangles, it is advantageous to restrict the sum to a single
site plus clusters that only contain complete triangles,
which reduces dramatically the number of clusters to be
considered. The number of topologically distinct linked
clusters on the kagomé lattice with 1 through 8 triangles is
1, 1, 1, 2, 2, 5, 7, and 15, respectively. (The maximum-site
cluster with N triangles has 2N � 1 sites.) For the entropy
of the kagomé lattice Ising antiferromagnet, this leads to a
rapidly convergent expansion, whose first term is the well-
known Pauling result [8] that gives a ground state entropy
of 0.501 36. The next correction to this result comes from a
12-site cluster of 6 triangles, which leads to S � 0:501 82,
that agrees with the exact result S � 0:501 83 [9] to 4
significant digits. This very simple example shows that,
in contrast to HTE, ground state properties of class (A)
models can be obtained within NLC without the need for
extrapolation.

We now consider the antiferromagnetic Heisenberg-
Ising Hamiltonian

 H �
X

hi;ji

SziS
z
j � J?�S

x
i S

x
j � S

y
i S

y
j� � hx

X

i

Sxi � hz
X

i

Szi ;

(3)

where we have chosen the Ising coupling to be unity. The
transverse field is denoted hx and the longitudinal field is
denoted hz.

As a first application of NLC to a class (A) quantum
model, we study the kagomé lattice Ising model in a
transverse field. This model is known to be disordered at
all temperatures [10]. In Fig. 1, we show results from the
NLC up to 5 and 6 triangle clusters for the entropy (S) and
specific heat (Cv) in transverse fields hx of 0, 0.01, 0.25,
0.5, and 1.0, respectively. Note that the temperature scale
goes down to 0.001, a real challenge for any numerical
calculation of a thermodynamic system. For hx � 0:0, 0.5,
and 1, the results have fully converged and there is no
discernible contribution from 6-triangle clusters at any
temperature. Such results are beyond the region of con-
vergence of HTE, and in contrast to ED of finite clusters
they do not suffer from finite-size effects. For hx � 0:25,
there is a double peaked structure in the specific heat and
the largest clusters make a small contribution near the
lower peak. Only for the smallest magnetic field the larger
clusters contribute. For hx � 0:01, the specific heat exhib-
its two well-separated peaks. At high temperatures the

transverse field plays no role and the results are identical
to the pure Ising model for the entropy and specific heat.
Well below T � 0:1, the transverse field causes the entropy
to head down towards zero and the second peak arises in
the specific heat. At the lowest temperatures the correla-
tions are enhanced by the transverse field [10] causing
contribution from clusters larger than those included in
our results.

A more challenging, and still open, question is what
happens to an Ising-like system when quantum fluctuations
are introduced via the XY coupling (J?) [class (B) model].
The kagomé-lattice Heisenberg model (J? � 1) is one of
the most fascinating quantum spin models, where spin-spin
correlations likely remain short ranged down to T � 0 [11–
13]. Its thermodynamic properties have also been of much
interest [14–16]. In Fig. 2, we show entropy and specific
heat for the XXZ models on kagomé lattice with contribu-
tions up to 7 and 8 triangles. For J? up to around 0.25 our
calculations converge down to low enough temperatures to
see that Cv must have two peaks. As J? is increased even
further, the NLC expansion breaks down before a second
peak could be resolved [15,16]. The temperature depen-
dence is suggestive that a similar ordering mechanism is
operative for the entire range 0< J? < 1, and quite likely
large unit cells are involved in further ordering at lower
temperatures [17].

The high temperature peak in Fig. 2 is associated with
short-range order and is perfectly resolved within our
approach. However, it is already beyond the radius of
convergence of HTE. In Fig. 3 we show a detailed com-
parison between NLC and HTE [16] for the kagomé lattice
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FIG. 1 (color online). NLC results up to 5 (thin lines) and 6
(thick lines) triangles for entropy (a) and specific heat (b) of the
transverse Ising model on the kagomé lattice as a function of
temperature (T) for five different values of the transverse field
(hx). Except for very low but nonzero transverse field, the direct
sum converges at all temperature.
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Heisenberg model. The HTE converges only for T > 1,
and inclusion of larger clusters does not improve conver-
gence at lower T. Only a Padé extrapolation can help HTE
at lower temperatures. Two such extrapolations from
Ref. [16] are also shown. They can lead to accurate results
but their reliability is, in general, not known. For example,
in Fig. 3, one can see that they start to differ from each
other right below the peak in Cv. For NLC, on the other
hand, we know that our results are converged if the weight
of larger graphs is negligible, i.e., it provides a controlled
way to approach lower temperatures that is somehow
absent in HTE and ED. Figure 3 also shows that, as

opposed to HTE, the NLC convergence moves to lower
temperatures as larger clusters are included.

Within a NLC approach, one way to accelerate the
convergence of the direct sum in (1) is to use sequence
extrapolation methods [5,6]. Their power can be seen in
Fig. 4, where we plot Cv for the Ising model in a transverse
and longitudinal field [10] (the phase diagram is shown in
the inset). With a small transverse field, adding a longitu-
dinal field causes a bond-ordered phase to arise. Here we
have chosen a small longitudinal field, which enhances the
correlations of the system, but does not drive it into the
ordered phase. Larger clusters begin to contribute to spe-
cific heat below T � 1, and the simple sum no longer
converges at lower temperature. However, two different
extrapolation methods (Euler [6] and Wynn [5]) lead to
results that converge at all temperatures. Euler’s method is
a powerful tool when terms in the sum alternate in sign [6].
On the other hand, Wynn’s algorithm is more general and
allows several cycles of improvements [5].

As a final test of our method we study the Heisenberg
model on the triangular and square lattices [class (C) mod-
els], which are known to develop long range order at zero
temperature. For the triangular lattice, we use NLC based
on triangular clusters (up to 8 triangles), whereas for the
square lattice we use a site-based expansion of up to 13
sites. In Fig. 5 we show the entropy of these models
obtained by various orders of extrapolations with the
Wynn and Berezenski methods [5]. These results are com-
pared with those obtained by Bernu and Misguich (BM)
[18]. The agreement is quite good down to T � 0:3 for the
square-lattice case, where the entropy is <0:05 (spin-spin
correlation length about 20 lattice spacings [15], i.e., larger
than our cluster sizes), whereas for the triangular-lattice it
is good down to T � 0:2 where the entropy is about 0.2
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FIG. 3 (color online). Specific heat of kagomé lattice
Heisenberg model as a function of temperature T. The direct
sum of HTE to order 13–16 is shown to diverge around T � 1.
NLC up to 7 and 8 triangle clusters converges below T � 0:4.
Two Padé approximants are also shown (see Ref. [16] for
details), one of which is close to NLC result down to T � 0:3.
The NLC results indicate that there may be a second peak below
T � 0:3.
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FIG. 4 (color online). Specific heat of kagomé lattice Ising
model in a transverse field hx � 0:5 and a longitudinal field hz �
0:25. The T � 0 phase diagram of the model is shown in the
inset (the line hx � 0 is critical). The parameters correspond to
large but finite correlation length, where bare sums up to 3, 4, 5,
and 6 triangle clusters diverge below T � 1 but the sequence
extrapolation methods converge at all temperatures. The sub-
script ‘‘2’’ in Wynn means that two cycles were applied to
accelerate convergence [19].
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FIG. 2 (color online). NLC results up to 7 (thin lines) and 8
(thick lines) triangles for the entropy (a) and specific heat (b) of
the XXZ models on the kagomé lattice.
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(spin-spin correlation length about two lattice spacings
[15], which raises the question, what other correla-
tions are building up leading to a breakdown of NLC
convergence?). In general, the extrapolations do not con-
verge well below the peak for the specific heat. Hence,
a priori, there is no advantage of NLC (with extrapola-
tion) over HTE (with Padé extrapolations) for models of
class (C), as both methods require extrapolations, whose
convergence is difficult to judge. NLC, however, does
provide a scheme that like HTE allows for systematic
extrapolations.

In summary, we have introduced a numerical linked-
cluster method to calculate properties of quantum lattice
models. It provides a framework to study observables in
the TL while performing exact diagonalization on finite-
size clusters. This approach allows us to go beyond the
radius of convergence of HTE, and is better suited to
models where correlations remain short ranged down to
low temperatures.

We have used NLC to study the thermodynamic prop-
erties of frustrated two-dimensional quantum antiferro-
magnets. We have shown that one can obtain accurate
results for short-ranged models (Ising and transverse
Ising models on a kagomé lattice) at all temperatures.
For models where correlations develop slowly, like XXZ
models on the kagomé lattice, there is a large temperature
window (which is 0:3< T < 1:0 for the Heisenberg case)
where NLC converges but HTE diverges. Hence, NLC
provides for these [class (B)] models a framework to
approach lower temperatures in a controlled way. We
have also shown that the region of convergence of NLC
increases as larger clusters are included.

In order to accelerate the convergence of the bare NLC
sum one can use sequence extrapolation methods, but then
uncertainty similar to Padé extrapolations for HTE re-

mains. As examples, we have studied Heisenberg models
on triangular and square lattices, where our results com-
pare very well with those in Ref. [18]. To study models of
interest at lower temperatures our approach can be ex-
tended to include larger clusters by using Lanczos type
methods focusing only on low lying states rather than a
complete diagonalization [1]. Furthermore, the method can
be applied to t� J and other models, and to various
susceptibilities and correlation functions. These are left
for future work.
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NLC are compared with results obtained by BM [18]. Subscripts
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