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A new method, multiple-wave diffraction anomalous fine structure, combining the x-ray multiple-wave
diffraction and diffraction anomalous fine structure techniques, is proposed. The real part of dispersion
correction �f0 and fine structure � function can be obtained directly by multiple diffraction analysis
without using Kramers-Krönig relations and kinematical fitting of diffracted intensity. Better wave vector
sensitivity of the fine structure is expected. The multiple-wave diffraction anomalous fine structure
experiment for a GaAs single crystal is reported as an example.
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X-ray scattering is closely related to x-ray absorption. In
principle, the scattered intensity and the absorption coeffi-
cient are linked through the real part f0 and the imaginary
part f00 of the anomalous scattering amplitude by the
Kramers-Krönig relations [1]. The well developed ex-
tended x-ray absorption fine structure (EXAFS) and near-
edge x-ray absorption fine structure (NEXAFS) provide
short-range ordering structural information. This includes
the near-neighbor bond lengths, and coordination number
around the specifically excited absorbing atoms for
EXAFS and the valence, empty orbital and bonding infor-
mation for NEXAFS. On the other hand, x-ray diffraction
yields long-range atomic structural information. In 1992
Stragier et al. [2] combined the two analysis approaches
into the so-called diffraction anomalous fine structure
(DAFS) method, which has become a powerful method
for both short- and long-range order structure analysis of
single crystals, powders, thin films, multilayers and super-
lattices [3–9].

The conventional DAFS measures the intensities of two-
wave diffractions versus the photon energies in the vicinity
of an absorption edge. The fine spectral distribution of the
diffracted intensity, together with the absorption spectra,
gives simultaneously atom-site and wave vector selectiv-
ities. The final goal of DAFS is to obtain site-dependent
spectral distributions of f0 and f00 of the excited atom. And
later the fine structure function �A�E� versus photon energy
E can be determined.

The analysis of the conventional DAFS involves the
fitting of the DAFS intensity spectrum with the kinematical
theory of x-ray diffraction. The accuracy of the analyzed
results rely on the atomic scattering factors f0 and f00.
However, the f0 obtained from the Hilbert transformation
with the Kramers-Krönig relations for truncated measured
absorption data may not be reliable. In addition, the data
analysis procedure is complicated. For this reason, a new
method called multiple-wave DAFS, abbreviated as
MDAFS, is proposed in this Letter, where a simple analysis
procedure is given and the useful phase information of the

structure-factor multiplets, linking the imaginary part with
the real part of the structure factors, involved in multiple
diffraction is considered [10,11]. This linkage to phases
thereby substitutes the Kramers-Krönig relations. More-
over, the constraint imposed by the additional reflection on
the diffraction geometry makes the MDAFS a much more
wave vector and site-sensitive technique than the two-wave
DAFS for the measurements.

The scattering amplitude from atoms in solids consists
of a smooth and an oscillating fine structures. The former is
due to a bare free atom, and the latter is from the modu-
lation caused by the scattering of photoelectrons from the
surrounding atoms. The atomic scattering factor of an atom
A for a given momentum transfer ~q and photon energy E is
 

f� ~q; E� � f0A� ~q� ��f00A�E� � i�f
00
0A�E� � �f000A�E��A

� f0A� ~q� � f
0�E� � f00�E�; (1)

where �A�E� � �0A�E� � i�
00
A�E�. The first three terms on

the right of the first equation are the contributions from the
bare atom, where f0A is the normal atomic scattering
factor, and �f00A and �f000A the real and the imaginary
dispersion corrections. The last term f00�E� of the second
equation, analogous to EXAFS, is related to the oscillating
fine structure �A function, whose real �0A and the imagi-
nary part �00A can be defined, from (1), as
 

�0A�E� �
�f0exp�E� � �f00A�E�

�f000A�E�
;

�00A�E� �
�f00exp�E� � �f000A�E�

�f000A�E�
;

(2)

where �f0exp and �f00exp are the anomalous dispersion cor-
rections that can be obtained from DAFS and EXAFS
measurements, respectively.

The diffracted intensity of a Bragg reflection G, as in the
kinematical approach, is proportional to the square of the
structure factor, defined as [5,6]
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 F� ~qG; E� � F0Ge
i�0G �

XNA
j�1

�f000Aj�Aj je
i�AjG�Aj; (3)

where the first term on the right contains the scattering of
all nonresonant atoms and resonant atoms Aj. The second
term is related to the fine structure resulting from all
the resonant A atoms at different site j, and �Aj �
cAj exp��MAjq

2� exp�i�AjG�, where cAj is the occupation
factor, the probability for the resonant A atom occupying
the j site.MAj is the Debye-Waller factor and phase �AjG �
~qG � ~rAj , ~rAj being the position vector of the j site in the
unit cell. F0G, namely, F0G�qG; E�, is the magnitude of the
smooth complex structure factor and �0G is the phase.

The diffraction fine structure can be isolated from the
experimental data by either the direct spline method or the
iterative Kramer-Krönig method [3,9]. In the direct spline
method, the DAFS data are splined and normalized, then
the spline is removed and used as the reference. This
normalized fine structure yields �qG�k� for a given scatter-
ing vector qG, where k � �2m�E� E0��

1=2=@ is the modu-
lus of the photoelectron wave vector and E0 is the binding
energy. The iterative Kramer-Krönig method finds a pair of
�f0 and �f00, which give the best fit to the measured
intensity data. Iteration by using the �f0 and �f00 values
of Refs. [12,13] as starting values is necessary to find a
correct pair. However, for a noncentrosymmetric structure,
the iterative Kramers-Krönig procedure cannot be applied.

Multiple diffraction occurs when several sets of atomic
planes in a crystal are simultaneously brought into position
to diffract an incident wave. For a three-wave (O, G, L)
diffraction, the crystal is first aligned for the primary
reflection G and then rotated around the reciprocal lattice
vector ~qG of theG reflection, the so-called azimuth � scan,
to bring the additional set of planes of the secondary
reflection L to also satisfy Bragg’s law. Hence, three
reciprocal lattice points O, G, and L are situated on the
surface of the Ewald sphere, where point O stands for the
incident wave. With this azimuthal � rotation around ~qG,
the secondary reflection L interferes with the primary G
reflection via the coupling reflection G� L. Because of
this interference the intensity of each reflection is modified.
The modified intensity of the G reflection is related to the
structure-factor triplet F3 � FLFG�L=FG and the triplet
phase �3 � �L � �G�L � �G, where �G, �L, and �G�L are
the individual phases of the primary and secondary and
coupling reflections, respectively. These phases connect
the f0 and f00 via the structure factors. The triplet phase
can be measured experimentally. According to the dynami-
cal theory of x-ray diffraction, the diffracted wave field
D�3�G of the G reflection in the three-wave diffraction is
given in an iterative Born approximation [11,14] by
 

~D�3�G � AG�G ~KG 	 ~KG

�
~D0 � AL

�L�G�L
�G

	 � ~KL 	 � ~KL 	 ~D0��

�
; (4)

where ~D0 is the direct incident wave field. AM is the
resonance function for M � G, L [11,14], which can be
represented in terms of the azimuthal rotation angle ��
and the fundamental width � of the three-wave diffraction
as 1=2���� � i� [11,14,15]. The first term in (6) is the 2-
wave field ~D�2�G and the second term is due to the interfer-
ence involving the secondary and the coupling reflections.
The �G is the electric susceptibility proportional to the
structure factor of the G reflection. The quantity
��L�G�L�=�G is proportional to structure-factor triplet:
F3 � �0��L�G�L�=�G, where �o � �re�2=��V� and re,
�, and V are the classic radius of electron, the x-ray
wavelength, and the volume of the crystal unit cell, re-
spectively. F3 can be represented in terms of the smooth
and oscillatory parts of the MDAFS spectrum:

 F3 � F
0GF0LF0�G�L�e
i�03

�
XNA
j

f000A�Aj j�Aj j�F0LF0�G�L�e
i��03��G���j

�

� F0LF0Ge
i��03��G�L���j �

� F0GF0�G�L�e
i��03��L���j

�
� (5)

where �G � �0A � �AjG, ��j is the phase of �Aj , and �03

is the triplet phase independent of �Aj . Combining Eqs. (4)
and (5), we obtain the intensity variation, �IG as [14]

 �IG �
IG�3� � IG�2�

IG�2�
� IK � ID

� PLL
1

j�Gj
2 �2

oF3F
3 �
�o
j�Gj

ALjAGj�1PGLF3

�
�o
j�Gj

A
LjAGj
�1PGLF
3 (6)

where the phase-independent IK is proportional to F3F


3

and the phase-dependent ID is the sum of the second and
third terms of the second equation. Therefore, ID is given
by
 

ID / F3 � F
3 � F
0GF0LF0�G�L� cos��03 � u�

�
XNA
j

f000A�Aj��


Aj
F0LF0�G�L�

	 cos��03 � �G � u� � �AjFOLF0�G�

	 cos��03 � �G�L � u�

� F0GF0�G�L��Aj cos��03 � �L � u��

(7)

where �M � �0M � �AM for M � G, L, and G� L. PLL
and PGL are the polarization factors. The ratio of the
resonance functions is expressed as AL=jAGj �
jALj=jAGj exp�iu�. As usual in a three-wave diffraction,
ID shows an asymmetric profile, depending on the resultant
phase given in (7), while IK forms a symmetric intensity
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background. Both ID and IK are related to the fine structure
�A. Thus, the distribution of the three-wave reflected in-
tensity versus photon energy provides the information
about the dispersion corrections f0�E� and f00�E�. By em-
ploying the expression (6) and (7), the asymmetrical re-
flected intensity distribution of �IG can be calculated as a
function of the azimuthal angle � at a specific photon
energy. Following this idea, instead of intensity, we pro-
pose to use the visibility Rv as the parameter for the
MDAFS spectrum. Rv, closely related to the phases men-
tioned, is defined as

 Rv �
I2 � Imin

Imax � I2
(8)

where I2 is the two-wave intensity background and Imax

and Imin are the maximum and minimum intensities of the
three-wave profile [Fig. 1(a)]. The corresponding spectral
distributions of f0�E� and f00�E� can be determined with
ease.

The experiment was carried out at the wiggler beamline
BL17B, National Synchrotron Radiation Research Center,
Taiwan. Consider the three-wave �000��222��33�1� diffrac-
tion of GaAs (111) cut crystal, with the Ga rich surface
facing the x rays. The (222) is a symmetric Bragg and �33�1�
an asymmetric Bragg reflection. Two scintillation counters
are used; one to measure the (222) diffracted intensity and
the other, placed off the diffracted plane, parallel to the
crystal surface, to detect the fluorescent yield. Both the
MDAFS and EXAFS data can be taken simultaneously or
separately. The experimental setup and conditions are the
same as those for the resonance phase measurements de-
scribed in [16,17]. The energy range used covers the Ga K
edge and the energy resolution is about 0.2 eV. The fluo-
rescence yield and the three-wave diffraction profile for
each photon energy are measured. Figure 1(a) shows the �
scan for E � 10:413 keV above the Ga K edge, where the
average background is the two-wave intensity of (222).
The asymmetric profile results from the resultant phase

effect. The intensities at maximum, minimum, and the two-
wave background, which determine the visibility Rv of the
asymmetry, are plotted against the photon energy in
Fig. 1(b).

The phase dependence of Rv linking the f0 and f00 makes
Rv a sensitive parameter for the determination of f0 and f00.
Since f00 can be directly obtained from the absorption
spectrum derived from the fluorescence yield after proper
corrections, the corresponding f0 can be estimated from the
measured Rv ratio. The measured Rv ratio and f00 versus
photon energy are shown in Figs. 2(a) and 3(b). With the
aid of intensity calculation, the equi-intensity ratio curves
of Rv for various combinations of f0 and f00 are plotted in
Fig. 2(b), where a smooth Rv surface has been constructed
with a numerical algorithm of interpolating two-
dimensional cubic splines. For a given f00 at the energy
E, the f0 can be easily obtained in the equi-intensity plot.
The determined f0�E� is shown in Fig. 3(a). The corre-
sponding fine structure function of the real part of ��k�,
deduced from Fig. 3 according to (2), is shown in the inset
of Fig. 4(c). The Fourier transform of �0�k� gives the radial

FIG. 1. (a) Measured GaAs (222) intensity versus �� of the
three-wave �000��222��33�1� diffraction position and
(b) diffraction intensities at the maximum, minimum, and two-
wave background of (a) versus x-ray photon energy.

FIG. 3. Measured (a) f0 and (b) f00 from the intensity ratio Rv
from Fig. 1 and fluorescence yield, respectively.

FIG. 2. (a) Measured intensity ratio Rv versus photon energy
and (b) the calculated RV versus f0 and f00 for Fig. 1.
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distribution function �0�r� shown in Fig. 4(c), which yields
the distances between the central atom and other atom
shells. The corresponding ��k� and �0�r� for EXAFS and
DAFS are shown in Figs. 4(a) and 4(b). The Fourier trans-
form of real space �0A�r� used is

 �0A�r� �
X
�;j

ka��
0
Aj
�k��Wj�k� expfi�2kr�

Aj
� ��

Aj
�k��g

where a � 1–3. ��
Aj
�k� is the photoelectron phase shift, � a

photoelectron scattering path, r�
Aj

the effective path length,

and Wj�k� the window function. The theoretical fits to
Figs. 4(a) and 4(c) are based on the program FEFF and
FEFFIT [18,19]. The complex function �A�k� for GaAs is
generated by the FEFF. The output of FEFF contains
the amplitude and phase of �A�k�, which lead to �A�k� �
amp�FEFF� _cos�phase�FEFF��. And the real part �A�k� is
fitted by using the modified FEFFIT function. The average
lattice parameter of GaAs is 5.6539 Å and the path lengths
to the first and second shells are 2.476 and 4.062 Å, with
the accuracies �r � 0:027 �A for the MDAFS, 0.046 Å for
DAFS, and�0:01 �A for EXAFS. A background correction
of MDAFS �A�k� is also considered by the FEFFIT, with
the goodness of fit [19], the R factor 0.025 for MDAFS,
0.049 for DAFS, and 0.043 for EXAFS. With the present
experimental accuracy of DAFS and MDAFS, only the first
two shells give reliable structural information.

In conclusion, we have demonstrated that using the
phase information inherent in multiple diffraction provides
a sensitive parameter Rv of intensity ratio for the determi-
nation of the spectral distributions of f0 and f00. Moreover,
the atomic site is well defined in the plane determined by
the reciprocal lattice vectors of the primary and the sec-
ondary reflection. Experimentally, the samples were
aligned under the multiple diffraction condition, which is

more stringent and precise than in the conventional DAFS.
In other words, the MDAFS is more wave vector- and site
sensitive than the conventional DAFS. Also the site selec-
tivity can be easily implemented in the input structure
factors for the intensity calculation as shown in (6). For
thin films and layered epitaxial materials, the Born or
Bethe approximation is equally applicable to give kine-
matical intensity ratios Rv, which lead directly to the
spectral distributions of f0 and f00.
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(b) DAFS, (c) MDAFS signals (points), and the theoretical fit
(solid curve). The insets show the background subtracted and
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