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Diffraction and refraction phenomena at the entrance of a hollow x-ray waveguide with weakly
absorbing dielectric cladding layers are investigated using two independent approaches: (a) analytical
and (b) numerical solutions of the wave equation in the paraxial (parabolic) approximation. It is shown
that the wave penetrating through the cladding material substantially modifies the wave field near the
waveguide entrance. It results in a significant increase of the total energy flux inside the guiding layer and
in additional spatial modulation of the electromagnetic field.
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The advancement of nanoscience and nanotechnology in
many fields requires the development of proper tools with
nanometer spatial resolution. X rays have many peculiar-
ities which make them suitable for studies of nano-objects:
short wavelength, penetrating power, capability to probe
samples in their natural environment, etc. This is the reason
why considerable effort is currently devoted to the devel-
opment of x-ray optical elements capable of providing
x-ray beams with the required size, divergence, and coher-
ence properties.

X-ray waveguides (WGs), proposed for the first time in
1974 by Spiller and Segmüller [1], are intensively studied
because they can provide fully coherent beams as small as
10 nm [2,3] in the hard x-ray region. X-ray microdiffrac-
tion with a record spatial resolution of 100 nm has been
demonstrated with planar WGs [4], as well as fabrication
of two-dimensional WGs providing a point source of 27�
44 nm2 [5]. The incident radiation can be coupled into the
guiding layer of x-ray WGs in two different ways: resonant
beam coupling (RBC) and front coupling (FC). RBC [6–8]
takes place in a three layer WG, with the incident beam at
grazing angle transmitted by the very thin upper layer and
trapped by the intermediate guiding layer; with this
scheme, the incoming beam of several tens of microns
can be compressed down to nanometer dimensions and
significant effective gain g (>100) in flux density can be
achieved [9]. In the FC scheme [10], the incoming radia-
tion is directly side coupled with the WG aperture, and the
spatial acceptance is therefore equal to the WG gap.
However, the angular acceptance is higher than in the
RBC mode [11], and prefocusing optics can be efficiently
used to obtain a system with a high overall gain g in flux
density. Jarre et al. have obtained a value of g � 4000 [5].
Besides the applications which use the waveguide as an
optical element capable of providing nanosize beams,

other studies rely directly on the interaction of the guided
field with a specimen placed inside the WG. This is the
case for studies on confined fluids [12] and on thin macro-
molecular films [13].

In the FC mode, the wave-field propagation can be
simply described as a superposition of guided modes,
source-free solutions of the Helmholtz equation [10,14].
This description, however, does not take into proper ac-
count the interaction of the incoming beam with the clad-
ding material at the entrance of the waveguide. This
interaction is described in the following in more detail,
both from an analytical point of view and from a computer
code based on the numerical solution of parabolic wave
equations [15,16]. From this analysis, it appears that sev-
eral interesting diffraction and refraction phenomena take
place, which substantially modify the wave field in the
waveguide. The comprehension of these phenomena, be-
sides the fundamental aspect, is of primary importance for
production of nanosize beams with predictable features.

We consider a planar hollow x-ray waveguide illumi-
nated on its side at a right angle by a linearly polarized
infinite plane wave of wavelength � � 0:1 nm and an
electric vector parallel to the WG plane. The gap d is
limited by two cladding walls (see Fig. 1) with dielectric
constant " � �1� �� i��2. In the following, silicon is
considered as the material constituting the walls. At the
photon energies considered in this Letter, �� �. Using
the paraxial ansatz, the electric field E can be expressed as

 Ez�x; y� � U�x; y� exp�ikx�; (1)

where U�x; y� is the slow changing complex field ampli-
tude and k � 2�=� the wave vector. The field is given by
the solution of parabolic wave equations (PWEs)
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2ik@U=@x�@2U=@y2�0; jyj<d=2;

2ik@U=@x�@2U=@y2�k2�"�1�U�0; jyj>d=2;
(2)

with continuity boundary conditions at y � 	d=2.
Kopylov and Popov [17] have shown that the field

U�x; y� diffracted by a single dielectric corner (half of the

waveguide in our case) can be expressed, in the paraxial
approximation, as:
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where F�x; y� is the Fresnel integral and M�x; y� is a new
special function whose influence is more significant for
weakly absorbing materials. Here, unlike in the WG case,
the origin of the y coordinate is taken at the material-
vacuum boundary. In the approximation of relatively large
distances x from the WG entrance [x
 1=�k�2

c�, with
�c � �2��1=2 the critical angle for total reflection], the
function M�x; y� can be expressed asymptotically as a
sum of two terms
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The first one M1�x; y� is a correction to the Fresnel edge
diffraction term due to the constituting material of the wall,
and the second oneM2�x; y� represents a lateral plane wave
propagating in the wall material along the material-vacuum
interface 0X with enhanced phase velocity Vp � c=�1=2

and entering into the vacuum at the critical angle �c [17].
The superposition of the direct and diffracted beams

with the lateral wave gives rise to an interference pattern
of successive maxima and minima [see Fig. 2(a)].
Coordinates of maxima in the spatial intensity distribution
can be found from the condition for constructive interfer-
ence of wave fields described by Eqs. (3) and (4).
Figure 2(a) shows the spatial distribution of intensity cal-
culated using the above equations. Figure 2(b) shows the
result of a computer simulation based on the PWE numeri-
cal solution [15], with the parameters (wavelength, mate-
rial, and distances) identical to those used in the asymptotic
solution. The qualitative agreement is very good.

We extended the same formalism to the analysis of the
field at the entrance aperture of the waveguide (see Fig. 1).

An approximate solution in the far field zone [x >
�d=2�2=�] is the superposition of the field

 ��x; y� � ~��k�� exp��i�=4� ik�2x=2�=
������
�x
p

; (5a)

where

 

~��k�� � d
�
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k�d=2
�
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�����������������
�2
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with two lateral plane waves M2�x; y� [see Eq. (4b)] enter-
ing into the vacuum gap from the opposite boundaries y �
	d=2 of the waveguide. In Eq. (5), � � y=x. The spatial
spectral amplitude ~��k�� in Eqs. (5) includes the sinc
function of �k�d=2�, corresponding to the Fraunhofer dif-
fraction of a plane wave from a thin slit, and a correction
term due to the material of the walls. The correction term
shifts the positions of the angular spectrum maxima to-
wards smaller angles. It is easy to show that the spectral
amplitude ~��k�� in Eqs. (5) is equal to

 

~��k�� �
Z �1
�1

’�y�dy ; where ’�y� �
�

cos�k�y� jyj< d=2;
cos�k�d=2� exp��k	�jyj � d=2�� else;

(6)

where 	 � ��2
c � �

2�1=2. For � values equal to the waveguide resonance angles �m, the function ’��m� � ’m cor-
responds exactly to the expression of guided modes. Taking the orthogonal modes f’mg of the waveguide as a basis, the

FIG. 1. Geometry of the incoming beam on the side of the
waveguide.
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projection of the field ��x; y� on the guided modes at distances x > xmin � �d=2�2=� is given by [18]

 ��x; y� �
Xm�mmax

m�0

cm��m�’m�y�; (7)

where the coefficients cm are given by

 cm��m� � k’mk�1
Z �1
�1
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�
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k�m=2
�

cos�k�md=2�

k	m=2

���
d
2
�
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2k�m

�
cos2�k�md=2�

k	m

�
: (8)

�m are the resonance angles,	m � ��2
c � �2

m�
1=2, andmmax

is the maximum number of allowed resonance modes.
Taking into account the propagation factor exp��i
mx�
for each mode, where in the parabolic approximation, for
�� �c, 
m � �2

m�k=2� i��=�3=2�=�21=2d�� [16], the
wave field ��x; y� at any point of the waveguide is given
by:

 ��x; y� �
Xm�mmax

m�0

cm��m�’m�x� exp��i
mx�: (9)

The total field U�x; y� is therefore given by the superposi-
tion of propagating modes Eq. (9) and two laterals waves
Eq. (4b) entering into the vacuum gap from the opposite
boundaries y � 	d=2 of the waveguide

 ��x; y� �
d������
�x
p exp�i�=4� ik�2

cx=2�
cos�k�cy�
k�cd=2

� exp�ik�cd=2�: (10)

In Fig. 3, the global intensity distribution in the vacuum
guiding layer for a 30 nm gap waveguide with Si walls and
photon wavelength � � 0:1 nm is shown. The waveguide
supports only one mode. Figure 3(a) depicts the asymptotic
solution given by Eqs. (9) and (10), and Fig. 3(b) represents
the result of the computer simulation based on the numeri-
cal solution of the parabolic wave equation [Eq. (2)] [15].
The agreement is very good. Figure 3(c) shows the inten-
sity distribution when the field at the waveguide entrance is
a step function [U�0; y� � 1 for y 2 ��d=2; d=2� and
U�0; y� � 0 elsewhere], and, therefore, penetration
through the cladding walls is excluded. Figure 3 shows
that the interference of guided mode with lateral waves
introduces strong spatial modulation of the signal.

To the purpose of a more quantitative comparison,
Figs. 4(a) and 4(b) show the distribution of the intensity
and of the phase of the resulting field along the optical axis
0x. The dashed line represents the asymptotic solution, the
solid line the computer simulation.

The contribution of the field diffracted and refracted by
the cladding walls is not only related to the spatial modu-
lation of the signal. Both asymptotic solutions and com-
puter calculations show that the field penetrating into the
waveguide from the weakly absorbing cladding walls sig-

FIG. 3. Total field in a waveguide with Si walls and a 30 nm
gap (wavelength � 0:1 nm) with a plane wave at the entrance:
(a) asymptotic solution; (b) computer simulation; (c) computer
simulation, with a step function field (U � 1 in the gap, 0
elsewhere) at the entrance.

FIG. 2. Diffraction from Si corner:
(a) analytical solution; (b) computer
simulation. In this case, the origin of
the y coordinate is taken at the
material-vacuum boundary.
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nificantly increases (approximately 1.5 times) the electro-
magnetic power in the waveguide compared to the case
when the field at the waveguide entrance is a simple step
function and therefore penetration through the cladding
walls is excluded. In Fig. 5, we report the normalized
integrated power within the WG gap as a function of
propagation distance x.

In conclusion, it has been shown that calculation of the
field in a hollow weakly absorbing x-ray waveguide must
take into account the interaction of the incoming beam
with the cladding material at the entrance of the wave-
guide. The total field in the guiding vacuum layer can then
be expressed as the superposition of guided modes with
nonuniform plane waves penetrating into the guiding gap
from the cladding walls at the critical angle of reflection �c
(lateral waves). An asymptotic expression of the total field

is given and compared with results of the computer simu-
lation based on numerical solution of the parabolic wave
equations. The two independent approaches (asymptotic
solution and computer simulation) to the diffraction prob-
lem demonstrate very good qualitative and quantitative
agreement. In this Letter, we considered as an incident
field an infinite plane wave. This is a good approximation
as long as the lateral extension of the incident beam is
several times the value of the WG gap, which is, in general,
limited to a few tens of nanometers. Extension to more
complex situations, as, for example, a Gaussian beam with
the waist of the same order of magnitude of the gap, is, in
principle, possible but outside the scope of this Letter.

The results presented in this Letter demonstrate that it is
necessary to include the interaction with cladding layers to
obtain an accurate description of the field inside the WG.
The capability to predict in the most accurate way the field
inside the WG is of relevance for applications, such as
microscopy, microdiffraction, etc., which use the nano-
beam provided by the WG, and for those applications
where the specimen is placed inside the waveguide, as
those reported in Refs. [12,13].
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FIG. 5. Normalized value of electromagnetic power integrated
within a vacuum gap vs coordinate x calculated for a steplike
entrance function (bottom lines) and for a total field calculated
following Eqs. (9) and (10) (top lines). The solid lines are the
result of computer simulation, and the dashed lines are the result
of asymptotic solution.

FIG. 4. Variation (a) of the intensity and (b) of the phase along
the optical axis 0x of a waveguide as the result of the asymptotic
solution (dashed line) and computer simulation (solid line).
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