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We confirm by explicit computation the conjectured all-orders iteration of planar maximally super-
symmetric N � 4 Yang-Mills theory in the nontrivial case of five-point two-loop amplitudes. We
compute the required unitarity cuts of the integrand and evaluate the resulting integrals numerically
using a Mellin-Barnes representation and the automated package of Czakon [Comput. Phys. Commun.
175, 559 (2006)]. This confirmation of the iteration relation provides further evidence suggesting that
N � 4 gauge theory is solvable.
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In his seminal work dating to the infancy of asymptotic
freedom, ’t Hooft [1] gave the hope of solving quantum
chromodynamics (QCD) in the so-called planar limit,
when the number of colors is taken to be large. While
this hope for ordinary QCD has not yet been realized, the
Maldacena conjecture [2] has brought it closer for four-
dimensional maximally supersymmetric Yang-Mills the-
ory (MSYM), by proposing a duality relating it at strong
coupling to type IIB string theory in five-dimensional anti–
de Sitter (AdS) space at weak coupling. Heuristically, this
suggests that the leading-color terms of the perturbative
series should be resummable and, along with possible
nonperturbative contributions, should yield relatively sim-
ple results matching those of weakly coupled gravity.

While the Maldacena conjecture does not address di-
rectly the scattering amplitudes of on-shell (massless)
quanta, previous work by Anastasiou, Dixon, and two of
the authors [3] shows that the basic intuition holds. That
Letter presented a conjecture for an all-orders iterative
structure in dimensionally regulated scattering amplitudes
of MSYM. Dixon and two of the authors [4] fleshed out
this structure for maximally helicity-violating (MHV) am-
plitudes. Witten’s proposal [5] of a weak-weak duality
between MSYM scattering amplitudes and a twistor string
theory provides further indications of new structures
underlying the simplicity of both MSYM and string theory
in AdS space at strong world sheet coupling.

Reference [3] verified the iteration conjecture explicitly
for the two-loop four-point function (a second verification
was given in Ref. [6]), and Ref. [4] did so for the three-loop
four-point amplitude. Furthermore, the computation of the
two-loop splitting amplitude in Ref. [3], its own iteration
relation, and consideration of limits as momenta become
collinear shows that, were the conjecture to hold for the
five-point two-loop amplitude, it would almost certainly
hold for all MHV two-loop amplitudes. The step from four-
point to five-point amplitudes is nontrivial, because at five

points, functions that are not detectable in real-momentum
collinear limits appear [7]. (The structure of factorization
with complex momenta is not known a priori.)

An important step in closing this gap has recently been
taken by Cachazo, Spradlin, and Volovich [8]. They con-
firmed the conjecture for the terms in the two-loop five-
point amplitude even under parity, using an earlier guess
for the integrand [9]. In this Letter, we will complete the
task. We compute the integrand using the unitarity method
[7,10,11], confirming the form of Ref. [9] for the parity-
even terms, and providing the correct form for the parity-
odd ones. We then integrate numerically at random kine-
matic points, using the MB integration package [12], to
show that the conjecture holds for both parity-even and
-odd terms. We also remark that the ‘‘unexpected iterative
structure’’ of Ref. [8] follows from the one of Ref. [3] by
setting odd parity terms to zero on both sides of the
iteration formula.

The unitarity method [7,10,13] has proven powerful for
computing scattering amplitudes of phenomenological and
theoretical interest out of reach using conventional
Feynman diagrammatic methods. Improvements [14]
have followed from the use of complex momenta [5].

Perturbative amplitudes in four-dimensional massless
gauge theories contain infrared singularities. These are
well understood [15] in MSYM and are a subset of the
ones appearing in QCD. As in perturbative QCD, the S
matrix under discussion here is not the textbook one for the
‘‘true’’ asymptotic states of the four-dimensional theory
but, rather, for states with a definite parton number. As in
QCD, a summation over degenerate states would be re-
quired to obtain finite results for scattering [16]. We regu-
late these divergences in a supersymmetry-preserving
fashion using the four-dimensional helicity (FDH) [17]
variant of dimensional regularization, with D � 4� 2�.
(This scheme is a close relative of Siegel’s dimensional
reduction [18]).
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We write the leading-color contributions to the L-loop
SU�Nc� gauge-theory n-point amplitudes as
 

A�L�
n � gn�2

�
2e���g2Nc
�4��2��

�
L

�
X
�

Tr�Ta��1� . . .Ta��n� �A�L�n ���1�; ��2�; . . . ; ��n��;

(1)

where � is Euler’s constant, and the sum is over noncyclic
permutations of the external legs. We have suppressed the
momenta and helicities ki and �i, leaving only the index i
as a label. This decomposition holds for all particles in the
gauge supermultiplet as all are in the adjoint representa-
tion. We will find it convenient to scale out the tree
amplitude, defining M�L�n ��� � A�L�n =A�0�n .

At two loops, the iteration conjecture expresses n-point
amplitudes entirely in terms of one-loop amplitudes and a
set of constants [13]. For MHV amplitudes up to O��0�,

 M�2�n ��� � 1
2�M

�1�
n ����2 � f�2����M

�1�
n �2�� � C�2�; (2)

where f�2���� � ���2 � �3�� �4�
2 � � � ��, and C�2� �

��2
2=2. Reference [4] provides analogous equations for

higher-loop MHV amplitudes. Subtracting out the known
infrared divergences [15] provides an all-loop form for the
finite remainder, expressed in terms of the one-loop finite
remainder and two constants, one of which is an anomalous
dimension. A conjecture for the required anomalous di-
mension was presented very recently [19], based on a
proposed all-loop Bethe ansatz [20]. It is rather interesting
that this anomalous dimension corresponds to one of the
terms appearing in the QCD one [21].

To check whether the iteration relation holds in the
critical five-point case, we have evaluated a set of cuts
sufficient to determine the five-gluon integrand com-
pletely. These include the three-particle cuts depicted in
Fig. 1(a) as well as the contributions to the two-particle
cuts from Fig. 1(b). The three-particle cuts on their own
determine all integral functions, except for those which are
simple products of one-loop integrals. The two-particle
cuts rule out the latter (double cuts suffice).

The use of a dimensional regulator involves an analytic
continuation of the loop momenta to D dimensions. At one
loop, the discrepancy between treating loop momenta in
four or D dimensions does not modify the amplitudes of a
supersymmetric gauge theory through O��0�. No such
proof exists for higher loops. Thus, to ensure that no

contributions are dropped, we compute the unitarity cuts
in D dimensions [22]. This does complicate the analysis,
because standard helicity states can no longer be used as
the intermediate states. We can avoid some of the addi-
tional complexity by considering instead the D � 10,
N � 1 super-Yang-Mills theory. When compactified on
a torus to D � 4� 2� dimensions, this is equivalent to
dimensionally regulated MSYM in the FDH scheme.

After reducing all tensor integrals, we obtain an expres-
sion for the amplitude in terms of the integrals shown in
Fig. 2. The color-ordered amplitude with four-dimensional
external momenta is given by a sum over the cyclic per-
mutations of those momenta,
 

M�2�5 ��� �
1

8

X
cyclic

�
s2

12s23I
�2�
�a���� � s

2
12s15I

�2�
�b����

� s12s34s45I
�2�
�c� ��� � R

�
2I�2�
�d���� � 2s12I

�2�
�e� ���

�
s12

s34s45

�
����
s23

I�2�
�b���� �

����
s51

I�2�
�a����

�

�
����
s23s51

I�2�
�c� ���

��
: (3)

Here sij � �ki � kj�2, R � "1234s12s23s34s45s51=G1234,

 �abc � s12s51 � as12s23 � bs23s34 � s51s45 � cs34s45;

"1234 � 4i"�	�
k
�
1 k

	
2k

�
3k



4 � Tr	�5 6k1 6k26k3 6k4
;

(4)

andG1234 � det�sij� (i, j � 1; . . . ; 4). (In �, a, b, c � �1.)
The terms lacking a factor of "1234 are even under parity,
while those with such a factor are odd. The even terms
match the guess originally given in Ref. [9], but the odd
terms differ (the odd terms in Ref. [9] do match the four-
dimensional double two-particle cuts).

Because of the 1=�2 infrared singularity in one-loop
amplitudes, and because these appear squared in the itera-
tion relation, we need expressions valid through O��2�. A
representation of the one-loop five-point amplitude, ex-
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FIG. 1. The three- and two-particle cuts of the five-point
amplitude.
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FIG. 2 (color online). The two-loop integrals appearing in the
five-point amplitude, with all external momenta flowing out-
wards. The normalization is as given in Eq. (8), and the numeri-
cal labels on the internal propagators in (c) specify the arbitrary
powers ai. The prefactor in (c) is understood to be inserted in the
numerator with power �a9; in Eq. (3), �a9 � 1.
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tending Ref. [7] to all orders in �, may be found in
Ref. [23]:

 M�1�5 ��� � �
1

4

X
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s12s23I
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�a���� �

�
2
"1234I

�1�6�2�
�b� ���; (5)

in terms of the integrals of Fig. 3. As indicated by the
superscript, the second integral [Fig. 3(b)] is to be eval-
uated in 6� 2� dimensions. In D � 6, it is completely
finite, but because it appears multiplied by an infrared-
singular integral in Eq. (2) we need its value through O���.

To obtain Laurent expansions in � for our integrals, we
use the Mellin-Barnes (MB) technique, successfully ap-
plied in numerous calculations (see, e.g., Refs. [4,24–27]
and Chap. 4 of Ref. [28]). It relies on the identity

 

1

�X� Y��
�
Z ��i1

��i1

Yz

X��z
���� z����z�

����
dz

2�i
; (6)

where �Re� < �< 0. This basically replaces a sum over
terms raised to some power with a product of factors.

The box function in Fig. 3(a) was given to all orders in �
in terms of a hypergeometric function in Ref. [29]. Here we
need its value through O��2�. Evaluating the pentagon in
Fig. 3(b) with arbitrary powers of propagators also allows a
parallel evaluation of this integral to the required order.

The derivation of a fourfold MB representation for the
one-loop pentagon diagram is straightforward, after
Feynman parametrizing,
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where Kij � ki � kj, a2345 � a2 � a3 � a4 � a5, A �
P
ai, z124 � z1 � z2 � z4, etc. We have allowed for arbitrary

powers of propagators so that we can obtain all one-loop integrals. Taking a5 ! 0, with other ai � 1, gives the box integral
I�1�
�a� in Fig. 3(a). Setting all ai � 1 and shifting all terms except the e�� prefactor by �! �� 1 yields the D � 6� 2�

pentagon I�1�6�2�
�b� , corresponding to Fig. 3(b). The contours of integration are chosen so that the real parts of the arguments

of all gamma functions are positive.
The various two-loop pentabox integrals have a sevenfold MB representation obtained by inserting a threefold MB

representation for a two-mass double box into Eq. (7):
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��aj���4�a1234�2��
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��4�2��a56789�z567�

���2���a124�z57���2���a234�z67���a1234���2�z567���2���a5789�z134�z567�: (8)

The limit a6 ! 0 or a7 ! 0 with a9 � 0 and the other
ai � 1 yields the double box with one massive leg
[Figs. 2(a) and 2(b)] in agreement with Refs. [27,30].
Moreover, P�2��1; . . . ; 1;�1�, P�2��1; . . . ; 1; 0�, and
P�2��1; . . . 1; 0; 0� yield the integrals in Figs. 2(c), 2(e),
and 2(d), respectively.

An essential step in the use of the MB technique is
the resolution of singularities in � or zeros that appear
as ai ! 0. There are two strategies for doing this [24,25].
Quite recently, the second strategy was formulated
algorithmically [12,31] and implemented in the MB

package [12]. It produces code that allows the inte-
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FIG. 3 (color online). The one-loop integrals required to all
orders in � for the one-loop five-point amplitude. The normal-
ization is as given in Eq. (7), and the numerical labels on the
internal propagators in (b) specify the arbitrary powers ai.
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grals to be evaluated numerically to reasonably high
accuracy.

The even terms in Eq. (3) were recently evaluated in
Ref. [8] using the MB package [12] along with the guess of
Ref. [9]. Those authors stated that an ‘‘unexpected iterative
structure’’ holds for the parity-even terms alone. We may
observe that this structure is not independent of the com-
plete iteration formula Eq. (2): Use the results for the one-
loop five-point amplitude in Eq. (5), set the odd terms to
zero, and use the fact that the one-loop MHV amplitudes
have even parity through O��0�. At higher loops, we do not
expect a clean separation between ‘‘even’’ and ‘‘odd’’
terms, as nonvanishing terms of the form "2

1234 will arise.
These are even under parity.

We have evaluated all the two-loop integrals in Fig. 2
through O��0� and the one-loop integrals in Fig. 3 through
O��2� using the representations in Eqs. (7) and (8). We
have checked to a numerical accuracy of five significant
digits at three independent and generic kinematic points
that the iteration formula (2) is indeed correct for the
complete amplitude. [Obtaining this numerical accuracy
is straightforward, because we find no large cancellations
between the terms in Eq. (3)]. This is a crucial check on the
conjecture, because the parity-odd terms in the five-point
amplitude are precisely the ones which are not constrained
by collinear factorization onto four-point amplitudes. A
fully analytic confirmation would also be desirable.
Techniques such as those of Ref. [6] may be useful in
this regard.

The calculation presented here makes a nontrivial addi-
tion to the existing body of evidence for the iteration
conjecture [3,4]. The conjecture itself gives us good rea-
sons to believe that MSYM is solvable. Within the context
of the planar perturbative expansion, this would imply the
resummability of the series. Parallel developments in un-
covering the integrable structure of the theory (see, e.g.,
Refs. [20,32]) also lend credence to this belief.
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