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We construct a class of topological quantum codes to perform quantum entanglement distillation. These
codes implement the whole Clifford group of unitary operations in a fully topological manner and without
selective addressing of qubits. This allows us to extend their application also to quantum teleportation,
dense coding, and computation with magic states.
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One of the main motivations for introducing topological
error-correction codes [1– 4] in quantum-information the-
ory is to realize a naturally protected quantum system: one
that is protected from local errors in such a way that there is
no need to explicitly perform an error syndrome measure-
ment and a fixing procedure. Physically, this is achieved by
realizing the code space in a topologically ordered quan-
tum system. In such a system, we have a gap to system
excitations and topological degeneracy, which cannot be
lifted by any local perturbations to the Hamiltonian. Only
topologically nontrivial errors are capable of mapping
degenerate ground states onto one another. Thus, a natural
question is how to implement quantum-information proto-
cols in a topological manner, thereby getting the benefits
provided by quantum topology.

Quantum distillation of entanglement is one of those
very important protocols in quantum information [5]. It
allows us to purify initially mixed states with a low degree
of entanglement towards maximally entangled states,
which are needed in many quantum-information tasks.
The most general description of entanglement distillation
protocols [5–7] relies on the implementation of unitary
operations from the Clifford group. This is the group of
unitary operators acting on a system of n qubits that map
the group of Pauli operators onto itself under conjugation.

In this Letter, we have been able to construct quantum-
topological codes that allow us to implement the Clifford
group in a fully topological manner. The Clifford group
also underlies other quantum protocols besides distillation.
Thus, as a bonus, we obtain complete topological imple-
mentations of quantum teleportation and superdense cod-
ing. We call these topological codes triangular codes. In
addition, they have two virtues: (i) There is no need for
selective addressing, and (ii) there is no need for braiding
quasiparticles. The first property means that we do not have
to address any particular qubit or set of qubits in order to
implement a gate. The second one means that all we use are
ground state operators, not quasiparticle excitations.

In order to achieve these goals, we shall proceed in
several stages. First, we introduce a new class of topologi-
cal quantum error-correcting codes that we call color co-
des. Unlike the original topological codes in Ref. [1], these
are not based in a homology-cohomology setting. Instead,

there is an interplay between homology and a property that
we call color for visualization purposes. This color is not a
degree of freedom but a property emerging from the ge-
ometry of the codes. After color codes have been presented
for closed surfaces, we show how colored borders can be
introduced by doing holes in a surface. In particular, we
define triangular codes, so called because they consist of a
planar layer with three borders, one of each color. These
codes completely remove the need for selective addressing.
If the lattice of a triangular code is suitably chosen, we
show that the whole Clifford group can be performed on it.
Finally, we give the Hamiltonian that implements the
desired self-correcting capabilities. It is an exactly solvable
local Hamiltonian defined on spin-1=2 systems placed at
the sites of a two-dimensional lattice.

A quantum error-correcting code of length n is a sub-
space C of H �n

2 , with H 2 the Hilbert space of one qubit.
Let the length of an operator on H �n

2 be the number of
qubits on which it acts nontrivially. We say that the code C
corrects t errors when it is possible to recover any of its
(unknown) states after any (unknown) error of length at
most t has occurred. Let �C be the projector onto C. We say
that C detects an operator O if �CO�C / �C. The dis-
tance of a code is the smallest length of a nondetectable
error. A code of distance 2t� 1 corrects t errors. We talk
about ��n; k; d�� codes when referring to quantum codes of
length n, dimension 2k, and distance d. Such a code is said
to encode k logical qubits in n physical qubits.

Now let X, Y, and Z denote the usual Pauli matrices. A
Pauli operator is any tensor product of the form

Nn
i�1 �i,

with �i 2 f1; X; Y; Zg. The closure of such operators as a
group is the Pauli group Pn. Given an Abelian subgroup
S � Pn not containing �I, a stabilizer code of length n is
the subspace C �H �n

2 formed by those vectors with
eigenvalue 1 for any element of S [8,9]. If its length is n
and S has s generators, it will encode k � n� s qubits. Let
Z be the centralizer of S in Pn, i.e., the set of operators in
Pn that commute with the elements of S. The distance of
the code C is the minimal length among the elements of Z
not contained in S up to a sign.

Suppose that we have a two-dimensional lattice em-
bedded in a torus of arbitrary genus such that three links
meet at each site and plaquettes can be three-colored; see
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Fig. 1 for an example in a torus of genus one. We will take
red, green, and blue as colors (RGB). Notice that we can
attach a color to the links in the lattice according to the
plaquettes they connect: A link that connects two red
plaquettes is red, and so on. With such an embedding at
hand, we can obtain a color code by choosing as generators
for S suitable plaquette operators. For each plaquette p,
there is a pair of operators: BXp and BZp. Let I be an index set
for the qubits in p’s border, then

 B�p :�
O
i2I

�i; � � X; Z: (1)

Color codes are local because [1] each generator acts on a
limited number of qubits and each qubit appears in a
limited number of generators, whereas there is no limit in
the code distance, as we shall see.

We will find it very useful to introduce the notion of
shrunk lattices, one for each color. The red shrunk lattice,
for example, is obtained by placing a site at each red
plaquette and connecting them through red links; see
Fig. 1. Note that each link of a shrunk lattice corresponds
to two sites in the colored one. Note also that green and
blue plaquettes correspond to the plaquettes of the red
shrunk lattice.

We classify the plaquettes according to their color into
three sets R, G, and B. Observe that for � � X; Z

 

Y
p2R

B�p �
Y
p2G

B�p �
Y
p2B

B�p (2)

hold because these products equal �̂ :� ��n. We shall be
using this hat notation for operators acting bitwise on the
physical qubits of the code. Equation (2) implies that four
of the generators are superfluous. We can now calculate the
number of encoded qubits using the Euler characteristic of
a surface � � f� v� e. Here f, v, and e are the number
of plaquettes, sites, and links of any lattice on the surface.

Applying the definition to a shrunk lattice, we get

 k � 4� 2�: (3)

Observe that the number of encoded qubits depends only
upon the surface, not the lattice. When the code is re-
phrased in terms of a ground state in a quantum system
(11), this will be an indication of the existence of topo-
logical quantum order [10].

So far, we have described the Hilbert space of the logical
qubits in terms of the stabilizer. Now we want to specify
the action of logical operators on those qubits. To this end,
we introduce an equivalence relation among the operators
in Z, which we shall use repeatedly. We say that A� B if A
and B represent the same quotient in Z=S. Notice that two
equivalent operators will have the same effect in C. Now
we introduce the key idea of string operators. They can be
red, green, or blue, depending on the shrunk lattice we are
considering. Let P be any closed path in a shrunk lattice.
We attach to it two operators: If P is a path and the qubits it
contains are indexed by I, we define

 S�P :�
O
i2I

�i; � � X; Z: (4)

The point is that string operators commute with the gen-
erators of the stabilizer. Also observe that, let us say, a red
plaquette operator can be identified both with a green string
or with a blue string; see Fig. 2. In both cases, the paths are
boundaries, but in the first case it is a boundary for the
green shrunk lattice and in the second for the blue one.

We can now relate Z2 homology theory [11] and string
operators. We recall that a closed path is a boundary iff it is
a combination of boundaries of plaquettes. For the, say, red
shrunk lattice, green and blue plaquettes make up the set of
its plaquettes. Thus, two string operators of the same color
are equivalent iff their corresponding paths are homolo-
gous, that is, if they differ by a boundary. Then it makes
sense to label the string operators as SC�� , where C is a

FIG. 1 (color online). (a) A color code in a torus. Each site is a
qubit and each plaquette a generator of the stabilizer S. The
dashed red line corresponds to the shrunk red lattice. The thick
red and blue lines are string operators. They act on the sites lying
on their links. The dotted green line is the string operator that
results from the product of the red and the blue one. (b) There are
two ways in which we can change the shape of a red string
operator. We can either consider homologous strings only or also
use the operator equivalence (5).

FIG. 2 (color online). A honeycomb lattice with a green bor-
der. Notice the two possible points of view for the operators of
the plaquette p as boundary paths. The green string S is ho-
mologous to part of the border and, thus, is equivalent to the
identity. There is also a pair of equivalent three-string operators
A and B.
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color, � is a Pauli matrix, and � is a label related to the
homology class. But what about the equivalence of strings
of different colors? Figure 1 shows how the product of a
pair of homologous red and blue strings related to the same
Pauli matrix produces a green string. Note that at those
qubits in which both strings cross they cancel each other. In
general, we have

 SR�� SG�� SB�� � 1: (5)

This property gives the interplay between homology and
color, as we will see later.

The commutation properties of strings are essential to
their study as operators on C. It turns out that:

 �SC�� ; SC
0�

� � � �SC�� ; SC
0�0

� � � �SC�� ; SC�
0

� � � 0: (6)

The first commutator is trivially null; for the second, note
that two homologous strings must cross an even number of
times; the third is zero because two strings of the same
color always share an even number of qubits. Other com-
mutators will depend on the homology; they will be non-
zero iff the labels of the strings are completely different
and closed paths in the respective homology classes cross
an odd number of times. For example, consider the torus
with the labels 1 and 2 for its two fundamental cycles. If we
make the identifications

 Z1$ SRZ1 ; Z2$ SGZ1 ; Z3$ SRZ2 ; Z4$ SGZ2 ;

(7)

 X1$ SGX2 ; X2$ SRX2 ; X3$ SGX1 ; X4$ SRX1 ;

(8)

then we recover the usual commutation relations for Pauli
operators in H 4

2.
We now determine the distance of color codes. Recall

that in order to calculate the distance we must find the
smallest length among those operators in Z which act
nontrivially on C. Let the support of an operator in Z be
the set of qubits in which it acts nontrivially. We can
identify this support with a set of sites in the lattice. The
point is that any operator in Z such that its support does not
contain a closed path which is not a boundary must be in S.
The idea behind this assertion is illustrated in Fig. 3. For
such an operator O, we can construct a set of string
operators with two properties: Their support does not
intersect the support of O, and any operator in S commut-
ing with all of them must be trivial. The distance thus is the
minimal length among paths with nontrivial homology.

Strings are all we need to handle tori of arbitrary genus.
Things get more interesting if we consider oriented sur-
faces with a border, which can be obtained by opening
holes in a closed surface. In particular, we will introduce
holes by removing plaquettes. If we remove, for example, a
green plaquette, green strings can have an end point on it,
but not blue or red ones. Then borders have a color, and
only a green string can end at a green border; see Fig. 2.

The most important case of such bordered codes are trian-
gular codes. They are constructed starting with a color
code in a sphere from which a site and its neighboring
three links and three plaquettes are removed. From con-
straints (2), we observe that two generators of the stabilizer
are removed in the process. Since a color code in the sphere
encodes zero qubits, a triangular code will encode a single
qubit. Examples of triangular codes are displayed in Fig. 4.

So let us show why new features are introduced through
triangular codes. Observe that Eq. (5) suggests the con-
struction displayed in Fig. 2: Three strings, one of each
color, can be combined at a point and obtain an operator
that commutes with plaquette operators. Figure 3(b) shows
the color structure of the borders in a triangular code. Let
T�, � 2 fX; Zg, be the three-string operators depicted in
the figure. By deforming T a little, it becomes clear that
fTX; TZg � 0, because T and its deformation cross each
other once at strings of different colors. Such an anticom-
mutation property is impossible with strings because of (6).

Although three-string operators can be used to construct
an operator basis for the encoded qubit in a triangular code,
this can equivalently be done with the operators X̂ and Ẑ.
They commute with the stabilizer operators, and fX̂; Ẑg �
0 because the total number of qubits is odd. The generators

FIG. 3 (color online). (a) The gray area is the support of an
operator O in Z. It must be trivial since it commutes with the
colored string operators shown, which are enough to construct all
X and Z operators for logical qubits. (b) The color structure of a
planar triangular code. A three-string operator T and a deforma-
tion of it are displayed, showing why fTX; TZg � 0.

FIG. 4 (color online). (a) The simplest example of a triangular
code. The original lattice in the sphere can be recovered by
adding a site and linking it to the sites at the vertices of the
triangle. (b) Triangular codes of any size can be constructed with
the special property that any plaquette has v � 4m sites, with m
an integer. This extra requirement is needed in order to imple-
ment the phase-shift gate K.
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of the Clifford group are the Hadamard gate H and the
phase-shift gate K applied to any qubit and the controlled-
not gate �	X
 applied to any pair of qubits:

 H�
1���
2
p

1 1
1 �1

� �
; K�

1 0
0 i

� �
; �	X
 �

I2 0
0 X

� �
:

(9)

The action of these gates is completely determined up to a
global phase by their action on the operators X and Z of
individual qubits, for example,

 HyXH � Z; HyZH � X: (10)

Now consider Ĥ, K̂, and �̂	X
. Of course, �̂	X
 acts
pairwise on two code layers that must be placed one on
top of the other so that the operation is locally performed.
The fact is that in the triangular codes both Ĥ and �̂	X
 act
as the local ones at the logical level, for example:

 Ĥ yX̂ Ĥ � Ẑ; ĤyẐ Ĥ � X̂: (11)

Unfortunately, K̂ is more tricky because, in general, it does
not take ground states to ground states. This is so because
K̂BXpK̂

y � 	�1
v=2BXpB
Z
p if the plaquette p has v sites.

However, this difficulty can be overcome by choosing a
suitable lattice, as shown in Fig. 4. For such a suitable code,
if the number of sites is congruent with 3mod4, then K̂ acts
like Ky, but this is a minor detail. As a result, any operation
in the Clifford group can be performed on certain triangu-
lar codes in a fault-tolerant way and without selective
addressing. As for the distance of triangular codes, it can
be arbitrarily large: Notice that an operator in Z acting
nontrivially on C must have a support connecting the red,
green, and blue borders.

We can give an expression for the states of the logical
qubit fj�0i; j�1ig:

 j�0i :� 2	1�n
=2
Y
b

	1� BXb 

Y
p

	1� BXp
j0i�n (12)

and j�1i :� X̂j�0i, so that Ẑj�li � 	�1
lj�li, l � 0; 1. Observe
that, if we have a state in C and we measure each physical
qubit in the Z basis, we are also performing a destructive
measurement in the Ẑ basis. This is so because the two sets
of outputs do not have common elements. In fact, the
classical distance between any output of j�0i and any of
j�1i is at least 2t� 1. Moreover, we can admit faulty
measurements, since the faulty measurement of a qubit is
equivalent to an X error previous to it. In this sense, the
measuring process is as robust as the code itself.

Now let us return to the general case of an arbitrary color
code in a surface with a border. We can give a Hamiltonian
such that its ground state is C:

 H � �
X
p

BXp �
X
p

BZp: (13)

Observe that color plays no role in the Hamiltonian; rather,
it is just a tool we introduce to analyze it. Any eigenstate
j i of H for which any of the conditions B�p j i � j i is
not fulfilled will be an excited state. Then we can say, for
example, that a state j i for which BXp j i � �j i has an
X-type excitation or quasiparticle at plaquette p. These
excitations have the color of the plaquette where they live.
In a quantum system with this Hamiltonian and the ge-
ometry of the corresponding surface, any local error will
either leave the ground state untouched or produce some
quasiparticles that will decay. This family of quantum
systems shows topological quantum order: They become
naturally protected from local errors by the gap [12,13].

As a final remark, we want to point out that the ability to
perform fault tolerantly any operation in the Clifford group
is enough for universal quantum computation as long as a
reservoir of certain states is available [14]. These states
need not be pure, and so they could be obtained, for
example, by faulty methods, perhaps semitopological
ones. Namely, one can distill these imperfect states until
certain magic states are obtained [14]. These magic states
are enough to perform universal quantum computation
with the Clifford group, which is different from topological
computation based on braiding quasiparticles [1,15,16].
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